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Detailed comparison of spatial direct numerical simulations (DNS) and secondary
linear stability theory (SLST) is provided for the three-dimensional crossflow-
dominated boundary layer also considered at the DLR-Göttingen for experiments
and theory. Secondary instabilities of large-amplitude steady and unsteady crossflow
vortices arising from one single primary mode have been analysed. SLST results have
been found to be reliable with respect to the dispersion relation and the amplitude
distribution of the modal eigenfunction in the crosscut plane. However, significant
deviations have been found in the amplification rates, the SLST results being strongly
dependent on the necessarily simplified representation of the primary state. The
secondary instability mechanisms are shown to be local, i.e. robust with respect to
violations of the periodicity assumption made in the SLST for the wall-parallel
directions. Perturbations associated with different local maxima of the spanwise
periodic eigenfunctions develop independently from each other interacting only with
the primary vortices next to them. Characteristic structures induced by different
secondary instability modes have been analysed and an analogy with the Kelvin–
Helmholtz instability mechanism has been highlighted.

1. Introduction
Significant progress has been made in the past decade in work on transition in three-

dimensional crossflow (CF) dominated boundary layers. Starting from the available
characterization of primary instabilities (see Reed & Saric 1989; Bippes 1999), a
secondary instability of large-amplitude CF vortices could be identified theoretically
(Balachandar, Streett & Malik 1992; Malik & Chang 1994; Malik et al. 1999; Koch
et al. 2000), numerically (Högberg & Henningson 1998; Wassermann & Kloker 2002,
2003; Wintergerste 2002), and experimentally (Bippes 1999; Kawakami, Kohama &
Okutsu 1999; White et al. 2001; Chernoray et al. 2005; White & Saric 2005). With
some limitations to be detailed in the following, the successive growth of primary
and secondary instabilities has been recognized as the two fundamental steps in
the transition process. Both experimental and numerical evidence indicates that the
laminar–turbulent breakdown readily follows the onset of the explosive convective
secondary instability (see also the review by Saric, Reed & White 2003).

The theoretical model for the secondary instability mechanism is provided by the
secondary linear stability theory (SLST) developed by Balachandar et al. (1992),
Malik & Chang (1994), Malik et al. (1999) and Koch et al. (2000). The stability
of three-dimensional boundary layers nonlinearly deformed by primary CF vortices
is investigated with respect to infinitesimal perturbations. The unperturbed state
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(primary state) is assumed to be invariant in the direction of the primary-vortex
axis and to be steady in a proper Galilean reference system. Both assumptions are
approximated well when only one steady or unsteady primary mode is excited (steady
and unsteady fundamental cases), in which case the primary state is characterized by
stationary or travelling CF vortices resulting from the superposition of the excited
mode and its spanwise superharmonics. In the unsteady case, the CF vortices drift in
a spanwise direction with the phase velocity of the generating mode, which is also the
phase velocity of its superharmonics, and are steady in a reference system moving with
that same velocity. The case in which different steady modes are superposed to produce
an array of non-identical steady CF vortices (steady CF packet, see Wassermann &
Kloker 2003) or even a single isolated vortex (see Radeztsky, Reibert & Saric 1999)
also fits the assumptions mentioned. Cases where at least two modes with different
phase velocities simultaneously achieve relevant amplitudes (non-fundamental cases)
are a priori not covered by the SLST (see, e.g. Bonfigli & Kloker 1999).

By assuming the infinitesimal secondary perturbation to be a harmonic wave in
the direction of the CF-vortex axes, linearizing the Navier–Stokes equations, and
imposing homogeneous boundary conditions for the perturbation at the wall and in
the free stream, the stability analysis reduces to an eigenvalue problem governed by
two-dimensional partial differential equations in the two remaining spatial directions.
Only results for spanwise periodic fundamental cases are available in the literature (see
Malik & Chang 1994; Koch et al. 2000; Janke & Balakumar 2000), where Fourier
expansions are introduced for the discretization of the eigenvalue problem in the
spanwise direction (Floquet theory). The distinction between the temporal and spatial
approaches holds analogously to the primary stability problem. Koch et al. (2000)
showed that a generalization of the Gaster transformation used by Malik et al. (1999)
holds exactly for the infinite-span configurations with spanwise periodic primary state.

The characterization of secondary unstable modes with respect to the dispersion
relation, amplification rates and the amplitude distribution of the eigenfunctions for
the steady fundamental case is well established and will not be detailed here. We
follow the terminology of Koch et al. (2000) and indicate high-frequency modes
connected to the spanwise shear layer at the updraft side of the primary vortices
as type I modes (z-mode in Malik et al. 1999), high-frequency modes connected to
the wall-normal shear layer on top of the primary vortices as type II modes (y-
mode in Malik et al. 1999), and the low-frequency modes developing close to the
wall underneath the primary vortices as type III modes. The convective character of
secondary instabilities has been verified by Wassermann & Kloker (2002) by means
of DNS and later, theoretically, by Koch (2002).

Comparisons between SLST, experimental results and DNS have always been
qualitative and limited to the steady fundamental state. Because of the lack of detailed
experimental and numerical results, comparisons were possible only with respect to
the characteristic frequencies and the crosscut amplitude distributions for unstable
secondary modes. Agreement was found in all cases for the development of type I and
type III modes, but some inconsistencies were found with respect to the role of type II
modes. These often attained the largest amplification rates in SLST computations,
in particular in the high-frequency range (Malik et al. 1999; Janke & Balakumar
2000; Koch et al. 2000), but were not observed in most experimental investigations
(Kawakami et al. 1999; White et al. 2001) or DNS (Högberg & Henningson 1998;
Wassermann & Kloker 2002). Type II modes were detected by Wassermann &
Kloker (2002) and White & Saric (2005) in scenarios with subcritical primary steady
perturbations, but a significant disagreement was also observed by White & Saric
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between the large amplifications provided for those modes by the SLST and the
moderate amplitudes they effectively achieved with respect to type I modes. Both
Malik et al. (1999) and White & Saric (2005) justified the inconsistency on the basis
of receptivity considerations. Indeed, the energy content of perturbations exciting
secondary modes in experiments or DNS might be lower for very high frequencies,
for which type II modes dominate, than for lower frequencies, for which type I and
type III modes undergo larger amplification. If no doubt remains that secondary
instabilities may be active in real flows as foreseen by the SLST, a quantitative
validation of SLST results is still missing and might help to answer the open questions
connected to type II modes.

In all available DNS (Högberg & Henningson 1998; Wassermann & Kloker 2002,
2003), and in general under the assumption of infinite span, periodicity is given
in the spanwise direction and spatial amplification is restricted to the downstream
direction. On the contrary, within the SLST, amplification and periodicity are usually
prescribed along the vortex-oriented coordinates, in the direction of the vortex axis
and normal to it, respectively. This introduces a potential discrepancy, which is
not necessarily negligible even when the physically motivated assumptions of the
theory are fulfilled. Connected to this point is also the question of whether the
periodicity of primary and secondary perturbation is a necessary precondition for
the development of the instability. Both issues are of major relevance in determining
whether SLST results may be extrapolated to realistic flow configurations, which, of
course, may not be expected to be perfectly periodic in any direction. Koch et al.
(2000) considered detuned modes in their SLST Floquet-analysis, thus loosening the
periodicity requirements on the secondary perturbation, but not on the primary flow.
Furthermore, they also solved the spatial problem imposing amplification along
the chord of their flat plate, which did not coincide with the direction of the
primary-vortex axes. Both aspects are connected to the issues mentioned above,
but no conclusions have been drawn in that regard. According to Koch et al. (2000),
detuned modes may achieve moderately larger amplification rates than tuned modes.
Qualitative similarity between eigenfunctions of tuned and subharmonic secondary
modes has been observed by Balachandar et al. (1992).

The visualization of the flow fields resulting from the growth of secondary unstable
perturbations was attempted by Balachandar et al. (1992) and Malik & Chang (1994)
by superposing finite-amplitude eigenfunctions onto the corresponding steady primary
state for a rotating-disk flow and a swept Hiemenz flow, respectively. Balachandar
et al. (1992) conjectured the development of secondary vortices at the side of the
primary one, whereas Malik & Chang (1994), who considered a type II mode, observed
corotating secondary vortices on top of it. Detailed and conclusive visualizations of
the actual flow field have been provided by Wassermann & Kloker (2002, 2003) on
the basis of DNS results for both steady and unsteady fundamental cases, and for the
steady CF-packet case. In computations, where secondary instabilities were excited
by multi-frequency pulse-like perturbations, they found short trains of finger-like
vortical structures developing at the side of the primary vortex, in a region where
type I eigenfunctions achieve their maximum amplitudes. The attribution of the
secondary structures to large-amplitude type I modes was then a matter of course.
Type III modes were observed by different authors for the steady fundamental case
(Koch et al. 2000; Högberg & Henningson 1998; Wassermann & Kloker 2002, 2005),
but the corresponding structures were never documented.

The only available results for unsteady fundamental cases are experimental results
by Lerche (1997) and DNS by Wassermann & Kloker (2003). Balachandar et al.
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(1992) and Koch et al. (2000) developed SLST codes capable of considering the
unsteady fundamental case, but provided no results. Secondary modes analogous to
type I modes from the steady fundamental case, but now moving with the primary
vortices, were documented by Wassermann & Kloker (2003).

An answer to the question of whether the secondary instability mechanism observed
in the fundamental steady or unsteady cases may apply also to non-fundamental cases
is still missing. Transition scenarios characterized by the simultaneous perturbation
of steady and unsteady primary modes have been investigated by Bippes (1999)
experimentally, by Hein (2004) by means of highly resolved PSE, and by Wintergerste
(2002) by means of temporal DNS. Even if Bippes (1999) measured high-frequency
perturbations reminiscent of type I modes in regions with highly deformed primary
profiles, a clear identification of secondary instabilities could not be achieved.

The development of isolated secondary-structure trains in the DNS of the
fundamental cases by Wassermann & Kloker (2002, 2003) suggests a local behaviour
of secondary perturbations in the streamwise direction, in the sense that periodicity of
the flow in that direction, as assumed by the SLST, may not be necessary for secondary
growth. Further investigation of the characteristics of the secondary modes and of
the generating mechanism might help to clarify this point which is also relevant with
respect to the question of whether the development of secondary instabilities might be
possible in non-fundamental scenarios. In such cases, indeed, streamwise invariance of
the primary state is not granted, and secondary instabilities as predicted by the SLST
could develop only if, being a local phenomenon, they were non-sensitive to that point.

Starting from the results discussed above, the following aspects of secondary
instabilities in the fundamental scenarios will be addressed in the present paper:

(i) quantitative validation of the SLST by comparison with DNS results;
(ii) clarification of the disagreement between DNS and SLST with respect to the

role of type II modes;
(iii) investigation of the influence of the choice of the directions of exponential

growth and periodicity onto the instability behaviour;
(iv) investigation of the consequences induced on the SLST results by the

assumption of periodicity in the wall-parallel directions;
(v) documentation of vortical structures associated to single type I and type III

modes;
(vi) discussion and interpretation of the secondary instability mechanism.

The numerical procedures for DNS and SLST are presented in § 2, while § § 3 and
4 provide a characterization of the three-dimensional base flow and of the primary
states for the considered steady and unsteady fundamental scenarios. Validation of
the SLST by comparison with the DNS is discussed in § § 5 and 6, where also
open questions relative to the role of type II modes and to the influence of the
choice of the periodicity and exponential-grow directions are answered. The flow field
and the vortical structure associated to single large-amplitude secondary modes are
documented in § 7. An interpretation of the instability mechanism on the basis of an
analogy with the inviscid Kelvin–Helmholtz instability of the plane mixing layer (see
Drazin & Reid 2004) is proposed and verified in § 8.

2. Notations and basics of the numerical methods
2.1. Reference systems and non-dimensionalization

The reference systems considered for the formulation of the numerical procedures
and for post-processing are sketched in figure 1. Only boundary layers developing
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Figure 1. (a) Integration domain and (b) reference systems. The sign convention for angles
is such that for the configuration displayed in (b), ϕs , ϕr and ϕv are positive.

on a flat plate will be considered and the origin of all systems lies on the plate
surface. In all cases, the y-axis is normal to the plate surface and points into the
flow. The governing equations for the DNS are formulated in the plate-oriented
reference system (x, y, z), with the origin lying on the plate leading edge, and the
x-axis normal to it. The streamwise oriented reference system (xs, y, zs) is defined at
every downstream position requiring the xs-axis to be tangent to the edge streamline.
The vortex-oriented reference system (xv, y, zv) is considered for the SLST analysis
of the steady fundamental case. It is defined at every chord position requiring the
xv-axis to be normal to the wave vector of the primary perturbation, resulting from
the primary linear stability theory (PLST) at that position. The arbitrarily rotated
reference system (xr, y, zr) is used for post-processing. Each time, the position of
its origin (x0,r , z0,r ) in the plate-oriented reference system and the rotation angle ϕr

are explicitly assigned. The moving reference system (xm, y, zm) is relevant for the
unsteady fundamental cases. It is defined analogously to the plate-oriented system
(x, y, z), but translates in z with constant velocity cm equal to the phase velocity of the
primary perturbations in that direction. The moving vortex-oriented reference system
(xv,m, y, zv,m) and the moving rotated reference system (xr,m, y, zr,m) (not shown in
figure 1) are defined analogously to (xv, y, zv) and (xr, y, zr), but translate in z in the
same way as (xm, y, zm). Correspondingly, the coordinates (x0,r,m, z0,r,m) of the origin
of the (xr,m, y, zr,m) are given with respect the moving system (xm, y, zm).

Components of the velocity and vorticity vectors in the plate-oriented reference
system are (u, v, w) and (ωx, ωy, ωz), respectively. The letters α and γ are used to
indicate wavenumbers along the wall parallel directions x and z. Quantities referring
to different reference systems are marked by the corresponding subscripts (for example
us). The sign for angles and vorticity components is defined according to the left-hand
rule.

Using an asterisk to indicate dimensional quantities, flow field and governing
equations are made non-dimensional by means of the reference length L∗ = 0.1m, of
the x-component of the free-stream velocity u∗

∞ =14m s−1 and of the constant density
ρ∗ = 1.225 kg m−3. The non-dimensional kinematic viscosity ν is equal to the inverse
of the Reynolds number Re = L∗u∗

∞/ν∗ = 1/ν = 92 000.
Non-dimensionalization with the local edge velocity ue,s is normally used for post-

processing. For the general flow quantity f , the following notation is used:

f̃ =
f

ue,s

. (2.1)
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2.2. DNS code

The DNS procedure used for the present paper is based on Kloker (1993), Müller
(1995), Wassermann & Kloker (2002, 2003) and Bonfigli (2006). According to the
so-called spatial approach, the development of a three-dimensional boundary layer
along an infinite-span flat plate with given sweep is simulated by solving the full three-
dimensional unsteady incompressible Navier–Stokes equations inside the rectangular
domain shown in figure 1. The oncoming flow and the inviscid flow far outside of
the boundary layer are assumed to be steady and spanwise invariant (quasi three-
dimensional flow). Flows with streamwise pressure gradients can be considered by
imposing a non-constant edge velocity ue,s . In addition, spanwise periodic steady
and unsteady perturbations may be introduced through suction and blowing within
one or more strips on the wall surface (see figure 1). Single primary and secondary
unstable modes of the boundary layer may be perturbed by properly defining the
time development and the spatial distribution of the wall perturbation. Indeed, we
consider only perturbations which are periodic both in time and in the spanwise
direction and indicate with ω0 = 2π/T0 and γ0 = 2π/λ0,z the fundamental angular
frequency and the spanwise wavenumber, respectively.

A vorticity–velocity formulation of the Navier–Stokes equations is used and the
numerical procedure relies on the decomposition of the flow quantities into the base
flow, i.e. the steady spanwise invariant solution of the unperturbed problem, and
perturbation flow, i.e. the deviation from the base flow as a consequence of suction
and blowing at the wall. For the general flow quantity f we have f (t, x, y, z) =
fb(x, y) + f ′(t, x, y, z), where fb and f ′ are the base flow and the perturbation,
respectively. Of course, no linearization is introduced through this splitting, which,
on the other hand, allows the imposition of different optimal boundary conditions
for base and disturbance flow, as well as the separate manipulation of any of the two
flow components, as will be seen below.

Fourth-order standard finite differences on an equidistant orthogonal grid are
used in downstream (x) and wall-normal directions (y) for the computation of the
base flow. The solution is converged by a fictive time integration using low-order
time-marching schemes. Spatial discretization for the perturbation flow is obtained
by combining Fourier expansion in the z-direction with sixth-order compact finite
differences for the downstream and wall-normal directions. While the step size in the
streamwise direction (�x) is constant, that in the wall-normal direction (�y) may
be varied blockwise, progressively doubling for increasing distance from the wall.
Integration in time is achieved by a fourth-order Runge–Kutta scheme. Reflection at
the outflow boundary is avoided by suppressing oncoming (vorticity) perturbations
in a short region upstream of the actual outflow boundary.

A thorough description of the governing equations and of the boundary conditions
for the numerical algorithm is provided by Wassermann & Kloker (2002, 2003). They
also provided a validation of the procedure with respect to the growth and nonlinear
saturation of steady and unsteady primary modes. The missing validation for the
growth of secondary instabilities is provided in § § 5 and 6.

Deviating from the standard procedure, linearized simulations with spanwise
periodic base flow (fb = fb(x, y, z)) have been carried out in some cases, in order
to reproduce the simplified SLST flow field in the DNS computation. Base flow
and perturbation had then the same spanwise wavelength in the z-direction and the
former was defined (not computed) following the procedure used to determine the
primary state for SLST computations (see § 4.2). Linearization has been carried out
with respect to the perturbation flow and, of course, does not affect the nonlinear
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interaction between secondary perturbation and primary state, represented by the
base flow.

2.3. SLST code

The numerical procedure for the SLST analysis has been implemented by Messing
(2004) following the normal-velocity–normal-vorticity formulation of the stability
problem as developed by Koch et al. (2000). Referring to the vortex-oriented (fixed
or moving) reference system, the primary state is steady, constant over xv and
periodic in zv (array of elongated CF vortices). A secondary mode is an amplified
or damped harmonic wave in time (temporal approach), a neutral harmonic wave
in xv and generically periodic in zv (Floquet theory), which implies that secondary
perturbations present a two-dimensional amplitude distribution in the crosscut plane
(y, zv). For the general flow, quantity f of the steady fundamental case holds,
f (t, xv, y, zv) = ḟ (xv, y, zv) + f̈ (t, xv, y, zv), where ḟ and f̈ represent the primary
state and the secondary perturbation, respectively. Moreover, the expression

f̈ (t, xv, y, zv) = 2 Re[ ˆ̈f (y, zv) exp (i(αvxv − ωt))], αv ∈ �, ω ∈ �, (2.2)

holds for f̈ , where the complex-valued function ˆ̈f is zv-periodic and Re is the
real-part operator. We consider only tuned cases where primary and secondary
perturbations possess the same periodicity in the zv-direction, which, according to
the results of § 6.2, represents no limitation on the analysis. For every fixed αv , the
stability analysis reduces to an eigenvalue problem, where ω is the eigenvalue and
ˆ̈f is the eigenfunction. The amplitude distribution of the latter in the crosscut plane

(xv, zv) corresponds then to the well known two-dimensional amplitude distributions
for secondary perturbations. The formulation for the unsteady fundamental case is
completely analogous, the only difference being that all quantities are expressed as
functions of the coordinates in the moving system (xv,m, y, zv,m).

Discretization of the partial differential equations governing the eigenvalue problem
is achieved combining fourth-order compact finite differences in the wall-normal
direction with Fourier expansions in the zv-direction. The full spectrum of the resulting
discretized problem is computed for one αv-value using standard numerical libraries. A
Wieland-type iteration as implemented by Koch et al. (2000) is then used for tracking
relevant eigenmodes while varying various parameters of the stability problem.

The characteristics of spatially developing secondary perturbations are evaluated
on the basis of the results from the temporal analysis implemented in the numerical
code. According to the spatial approach of the SLST the expression

f̈ (t, xv, y, zv) = 2Re[ ˆ̈f (y, zv) exp(i(αvxv − ωt))], αv ∈ �, ω ∈ �, (2.3)

holds for the general quantity f̈ of the secondary perturbation in the steady
fundamental case. The corresponding eigenvalue problem is achieved by imposing
ω and considering αv as an eigenvalue. Koch et al. (2000) showed that, indicating
with T and S quantities from the temporal (equation (2.2)) and spatial approach
(equation (2.3)), respectively, the following identities hold almost exactly:

ωS = Re(ωT ), (2.4a)

Re(αv,S) = αv,T , (2.4b)

ˆ̈f S(y, zv) = ˆ̈f T (y, zv), ∀ y, zv, (2.4c)

Im(αv,S) = −Im(ωT )

cgr

, cgr =
∂Re(ωT )

∂αv,T

. (2.4d)
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They correspond to a generalization of the Gaster transformation for the PLST in
two-dimensional boundary layers and provide a one-to-one correspondence between
secondary modes from the spatial and the temporal approach.

A detailed description of the numerical code for the SLST analysis is provided by
Messing (2004), who also achieved a verification of the results by comparison with
data by Koch et al. (2000). Thereby an ambiguity in the notation of the coefficients
given by the latter authors could be clarified (see Koch 2002, footnote on p. 102).
Quantitative validation by comparison with DNS is provided in § § 5 and 6, where
also the validity of the Gaster transformation (2.4a) is confirmed.

2.4. Fourier analysis

Fourier expansion of the flow quantities in time is a fundamental tool in order to
identify both primary and secondary perturbations in the DNS flow field. Indicating
by f the generic flow quantity, we always consider expansions of the type

f (t, x, y, z) =

∞∑
h=−∞

f̂ (h)(x, y, z) exp(ihω0t). (2.5)

In some cases, modal amplitudes of harmonics h > 0 may be doubled to take into
account the contribution of components h < 0. To this purpose, we introduce the
notation

f(0) =
∣∣f̂ (0)

∣∣, f(k) = 2
∣∣f̂ (h)

∣∣, ∀h > 0. (2.6)

Moreover, f(0,0) is the spanwise average of the steady harmonic f(0).
Double Fourier transformation in time and in the spanwise direction is useful to

identify primary CF modes. Index pairs (h, k), h � 0, are used to indicate primary
modes with frequency ω = hω0 and spanwise wavenumber γ = kγ0. Modes with
positive k travel in the direction of the positive z-axis, i.e. against the crossflow.

3. Base flow
All results presented in this paper refer to the base flow of the crossflow experiment

of the DLR-Göttingen by Bippes and coworkers (Müller 1990; Lerche 1997; Bippes
1999). In the experimental set-up, the three-dimensional boundary layer developed
on a flat plate mounted in the wind tunnel with zero incidence and effective sweep
varying between ϕ∞ = 42.5◦ and ϕ∞ = 43.5◦. The chord length was L∗

c = 0.5 m and
measurements were carried out for free-stream velocities q∗

∞ between 12.5 m s−1 and
19 m s−1. A nearly constant favourable pressure gradient was induced by means of a
displacement body above the plate. The pressure coefficient cp at fixed chord positions
was almost independent of q∗

∞ and the infinite-span condition was approximated well.
For our numerical investigations we adopted ϕ∞ = 42.5◦ and q∗

∞ = 19 m s−1, corres-
ponding to the parameter set considered by most authors for theoretical and numerical
investigations of the DLR-experiment (Meyer 1989; Janke & Balakumar 2000; Koch
et al. 2000; Koch 2002; Wintergerste 2002; Hein 2004). The streamwise velocity ub,e

at the boundary-layer edge was found from the linear cp distribution,

cp =
p∗ − p∗

∞
1
2
ρ∗q∗ 2

∞
= 0.941 − 0.845

x∗

c∗ = 0.941 − 0.169 x, (3.1)

proposed by Meyer (1989). The spanwise component wb,e was constant and equal to
its value at infinity. The inflow boundary was located at x = 1 and the corresponding
boundary conditions were defined assuming a Falkner–Skan–Cooke profile matching
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both the displacement thickness of the experiment and the pressure gradient resulting
from (3.1).

The most relevant boundary-layer parameters computed for the streamwise velocity
component ub are plotted in figure 2 as functions of the streamwise coordinate x.
Notice that even though (3.1) fits the velocity distribution of a Falkner–Skan–Cooke
boundary layer with Hartree parameter βH = 2/3 (for which the streamwise pressure
gradient is constant), the resulting flow is not truly self-similar, since the constraint
imposed at the inflow on the displacement thickness does not match the Falkner–
Skan–Cooke solution at that chord position. The fit with a virtual leading edge, a
common procedure for Blasius boundary layers, is not possible here as, in general, it
is not for boundary layers with βH �= 0.

Amplification rates and the orientation of the wave vector for steady perturbations
resulting from the primary stability theory are shown in figure 3. Because of the large
sweep angle and the acceleration of the base flow in the downstream direction, CF
modes are unstable at all streamwise positions. The corresponding wave vectors are
nearly orthogonal to the inviscid streamline (ϕα ≈ ϕs + 90◦).
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Figure 4. Visualization of vortical structures (λ2-isosurfaces, λ2 = −5) for the steady
fundamental case (x0,r = 1.5, z0,r = 0.09, ϕr = 45.86◦). Arrows indicate the rotation direction of
the vortices. The dashed line shows the position of the crosscut plane of figure 5.

The base flow was computed in an extended domain ranging from xin = 1.0 to
xout = 7.43 in a chordwise direction. The grid was equidistant and the step sizes were
�x = 0.1309 × 10−2 and �y = 0.2294 × 10−3. When different discretizations were
considered for the unsteady simulation, the available base flow was interpolated to
the desired grid by means of fourth-order explicit interpolation.

4. Primary state
4.1. DNS results

We considered fundamental scenarios obtained by perturbing either only the steady
CF mode with spanwise wavenumber γ0 = 52.4 (i.e. wavelength λ∗

0,z = 12 mm) or
only the unsteady CF mode with γ0 = 52.4 and angular frequency ω0 = 6 (i.e.
frequency f ∗ = (ωu∗

∞)/(2πL∗) = 133 Hz). In both cases, the perturbation was initiated
at x = 1.56. Initial amplitudes were such that for x > 3, the streamwise perturbation
maxt,y,z{u′

s} achieved values between 10% and 30% of the local edge velocity ue,s .
Amplification of the primary modes was eventually suppressed by nonlinear satura-
tion, and a periodic pattern of stationary or travelling CF vortices could be observed.

All DNS results presented in this section were computed truncating the Fourier
expansion in the spanwise direction at the thirteenth superharmonic of the
fundamental wavenumber γ0 associated to the perturbed primary mode (γmax = 13γ0).
The streamwise and the minimum wall-normal step sizes in the near-wall region
were �x = 0.1309 × 10−2 and �ymin = 0.1147 × 10−3, respectively. The latter was
repeatedly doubled away from the wall at y = 0.004, y = 0.011 and y = 0.055,
and reached �ymax = 0.9176 × 10−3. The upper edge of the integration domain was
located at ye = 0.084 and the time step was �t = 3.49 × 10−4 (3000 time steps per
period of the unsteady primary perturbation). The relatively small wall-normal step
size was required to ensure a stable simulation of the primary CF vortices, which
set significantly more stringent requirements than, for example, Tollmien–Schlichting
waves in two-dimensional boundary layers.

4.1.1. Steady fundamental case

Figure 4 provides a visualization of the CF-vortex cores for the steady fundamental
case by means of λ2-isosurfaces (Jeong & Hussain 1995). The basic crossflow is from
bottom to top. Small counter-rotating vortices are visible on the updraft side of the
main ones; the arrows show the sense of rotation of the vortices (see also figure 5).
The characteristics of the perturbed primary mode determine the periodicity of the
flow in the z-direction (wavelength λ0,z = 0.12) and also the orientation of the vortex
axes. This becomes clear considering that we defined the orientation of the reference
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Figure 5. Flow field in the crosscut plane xr = 2.61 of figure 4 (x ≈ 3.32): (a) ũr -isocontours,
�= 0.1; (b) [w̃r , ṽr ]-vectors; (c) ∂ũr/∂y-isocontours, �= 10.0; (d) (∂ur/∂zr )/ub,s,e-isocontours,
�= 10.0; (e) ω̃x, r -isocontours, �= 2.5; (f ) λ2-isocontours, �= 5.0. Dashed lines correspond to
negative values. The horizontal dotted line denotes the undisturbed boundary-layer thickness
δs in zr = 0. The variation of δs over the considered zr -interval is less than 1%.

system for the visualization (ϕr = 45.86◦) by requiring the zr -axis to be parallel to
the wave vector of the perturbed mode resulting from the PLST computations at
x = 3.32 (xr ≈ 2.61, dashed line in the figure). At the position considered, the vortex
axes are indeed parallel to the xr -axis. We will make use of this in the following in
order to choose the orientation of the vortex-oriented coordinate system for the SLST
computations.

Some relevant flow quantities over the crosscut plane xr = 2.61 of figure 4 are shown
in figure 5. The plane is orthogonal to the vortex axes and covers approximately one
fundamental spanwise wavelength of the dominating mode (0, 1). The observer looks
in the downstream direction. Figures 5(b), 5(e) and 5(f ) allow a clear identification
of the vortical motion, while figures 5(a), 5(c) and 5(d) visualize its effect on the
streamwise velocity ũr and on its gradients over y and zr , i.e. on quantities which are
known to be relevant for the secondary instability of the flow. All quantities show the
typical distribution for CF-dominated boundary layers with large-amplitude steady
vortices (cf. Lerche 1997; Wassermann & Kloker 2002).

4.1.2. Unsteady fundamental case

The large-amplitude primary travelling vortices of the unsteady fundamental case
are visualized in figure 6. No lateral counter-rotating vortices are visible which is
different from the steady case and, as a consequence of the dependence of the
propagation direction of CF modes on their frequency, the direction of the vortex
axes is different from that in the steady case. The orientation of the reference system
for the visualization (ϕm,r = 37.77◦) has been defined with the zm,r -axis parallel to the
wave vector of mode (1, 1) at x = 3.32 (xm,r ≈ 2.30, dashed line in the figure). Also in
this case, perfect matching is observed between the direction of the vortex axes and
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Figure 6. Visualization of vortical structures (λ2-isosurfaces, λ2 = −5) for the unsteady
fundamental case (x0,m,r =1.5, z0,m,r = 0.07, ϕm,r = 37.77◦). Arrows indicate the rotation
directions of the vortices. The dashed line shows the position of the crosscut plane of figure 7.
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Figure 7. The flow field in the crosscut plane xm,r = 2.30 of figure 6 (x ≈ 3.32):
(a) ũm,r -isocontours, �= 0.1; (b) [w̃m,r , ṽm,r ]-vectors; (c) ∂ũm,r/∂y-isocontours, �= 10.0;
(d) (∂um,r/∂zm,r )/ub,s,e-isocontours, �= 10.0; (e) ω̃x,m,r -isocontours, �= 2.5; (f) λ2-isocontours,
�= 5.0. The reference system (xm, y, zm) moves in the spanwise direction with velocity cm equal
to the phase velocity of the perturbed primary mode. Velocities are computed with respect to
the moving frame: um = u, wm = w − cm. Dashed lines correspond to negative values. The
horizontal dotted line denotes the undisturbed boundary-layer thickness.

that of the wavefronts of the generating instability. In the moving system considered
in figure 6, the flow is steady and the vortices are fixed.

General analogy and some differences with respect to the steady case are found in
figure 7 for the flow quantities in the crosscut plane xm,r = 2.30 of figure 6 (notice
that the reference system is moving and also velocities are computed with respect
to the moving observer). Again a water-wave shape is visible in the ũm,r -profiles,
but in comparison to the steady case it is compressed in the wall-normal direction
and stretched in the spanwise direction (figure 7a). The vortex is closer to the wall
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(figure 7b and 7f ), wall-normal gradients are larger (figure 7c) and spanwise ones are
lower (figure 7d), as already observed by Wassermann & Kloker (2003). Within the
vortex core, the vorticity component ω̃x,m,r is larger in absolute value, whereas on its
updraft side the region of positive vorticity vanishes completely. This complies with
the absence of a lateral counter-rotating vortex at that position.

4.2. Definition of the primary state for SLST computations

It is common practice to extract the simplified primary state for SLST computations
from available descriptions of the flow provided by PSE or DNS (e.g. Malik & Chang
1994; Janke & Balakumar 2000; Messing 2004). However, some open questions
remain, since the basic assumptions of the SLST are not sufficient to determine the
extraction procedure uniquely. For our computations, we defined the primary state
on the basis of the DNS flow fields documented in § 4.1 and considered three different
extraction procedures, all of which fulfil the basic SLST assumptions. Details of the
primary-state definition are presented hereinafter only for the fundamental steady
case, but the unsteady fundamental case is completely analogous.

Indicating by x = xSLST the position at which the SLST analysis is carried out, we
follow the results from the previous section and define the vortex-oriented reference
system (angle ϕv) by requiring the zv-axis to be parallel to the wave vector of
the perturbed primary mode resulting from PLST computations. We indicate by
[ǔv v̌v w̌v]

T (y, z) the velocity components of the DNS flow field with reference to the
(xv, y, zv)-axes, restricted to x = xSLST, and expressed as functions of the remaining
plate-oriented coordinates. We then define γ0,v = γ0/ cos(ϕv) and consider the Fourier
expansions

[ǔv v̌v w̌v]
T (y, z) =

+∞∑
k=−∞

[
ˆ̌uv,(k)

ˆ̌vv,(k)
ˆ̌wv,(k)

]T
(y) exp(ikγ0z), (4.1)

[u̇v v̇v ẇv]
T (y, zv) =

+∞∑
k=−∞

[
ˆ̇uv,(k)

ˆ̇vv,(k)
ˆ̇wv,(k)

]T
(y) exp(ikγ0,vzv), (4.2)

for the restricted DNS flow and for the SLST primary state in the respective directions
of periodicity.

Differences between various extraction procedures originate because, since the
primary state is assumed to be constant in xv-direction, the continuity equation
reduces to

∂ ˆ̇vv,(k)

∂y
+ ikγ0,v

ˆ̇wv,(k) = 0, ∀k, (4.3)

and connects the velocity components v̇v and ẇv . As a consequence, if continuity has
to be granted, v̇v and ẇv may not be defined independently by extracting both of
them from the DNS flow field. However, it is not evident which component should be
extracted from the DNS and which, on the contrary, should be determined through
(4.3). An option is, of course, also to extract both components from the DNS flow
field and violate the continuity equation.

We consider the following alternative definitions for the primary state:

vv-fixed approach

ˆ̇uv,(k)(xv, y) = ˆ̌uv,(k)(y), ∀k, ∀xv, y, (4.4a)

ˆ̇vv,(k)(xv, y) = 0, k = 0, ∀xv, y, (4.4b)

ˆ̇vv,(k)(xv, y) = ˆ̌vv,(k)(y), k �= 0, ∀xv, y, (4.4c)
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Figure 8. Reference systems, integration domains (grey) and schematic representation of the
primary vortices (hatched) for (a) the original DNS, and (b) for the SLST primary state. Dashed
lines represent the plane x = xSLST. Arrows in (b) connect points with identical velocity vectors
in the planes x = xSLST and xv = 0.

ˆ̇wv,(k)(xv, y) = ˆ̌wv,(k)(y), k = 0, ∀xv, y, (4.4d)

ˆ̇wv,(k)(xv, y) =
i

kγ0,v

dˆ̌vv,(k)

dy
(y), k �= 0, ∀xv, y, (4.4e)

wv-fixed approach

ˆ̇uv,(k)(xv, y) = ˆ̌uv,(k)(y), ∀k, ∀xv, y, (4.5a)

ˆ̇vv,(k)(xv, y) =

∫ y

0

−ikγ0
ˆ̌wv,(k)(η) dη, ∀k, ∀xv, y, (4.5b)

ˆ̇wv(k)(xv, y) = ˆ̌wv,(k)(y), ∀k, ∀xv, y, (4.5c)

vv-wv-fixed approach

ˆ̇uv,(k)(xv, y) = ˆ̌uv,(k)(y), ∀k, ∀xv, y, (4.6a)

ˆ̇vv,(k)(xv, y) = ˆ̌vv,(k)(y), ∀k, ∀xv, y, (4.6b)

ˆ̇wv(k)(xv, y) = ˆ̌wv,(k)(y), ∀k, ∀xv, y. (4.6c)

In the vv-fixed approach, the wall-normal component v̇v is extracted from the DNS
flow field (equation (4.4c)) and ẇv follows from the continuity equation (equation
(4.4e)). In the wv-fixed approach, ẇv is defined on the basis of the DNS data
(equation (4.5c)) and v̇v is computed integrating the continuity equation in the
y-direction and imposing the no-slip condition at the wall (equation (4.5b)). In the
vv-wv-fixed approach, both velocity components are set equal to the corresponding
components from the DNS (equations (4.6b) and (4.6c)) and the continuity equation
is not fulfilled. In all cases, the velocity component u̇v , which does not appear in
the continuity equation, is defined according to the DNS flow field (equations (4.4a),
(4.5a) and (4.6a)). Finally, for the spanwise constant harmonic k = 0, the continuity
equation requires v̇v,(0) to be identically zero and poses no constraint on ẇv,(0), which
explains the use of (4.4b) and (4.4d) in the vv-fixed approach. For all approaches, the
vorticity field is computed as a final step, consistent with the velocity field delivered
by the extraction procedure.

Figure 8 is a conceptual sketch of the relation between the original DNS flow and
the resulting SLST primary state. According to the vv-wv-fixed approach, the primary
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state is defined at each point by shifting in the xv-direction the restriction of the DNS
flow field to the plane x = xSLST. As a consequence, the vortex axes in figure 8(b)
are straight and the periodicity length in the zv-direction is shorter than the original
periodicity length in the z-direction. Differences in the velocity components are less
than 0.5% of the local free-stream velocity. Larger and smaller flow structures appear
to be identical in all cases on visual inspection.

Since the continuity equation and the definition of the vorticity vector are
implicitly assumed in the formulation of the SLST solver for both primary state
and perturbation, primary states defined according to the vv-wv-fixed approach may
not be handled with the available SLST code. Results for that approach have been
obtained only by means of the linearized DNS code with spanwise periodic base flow.

Malik & Chang (1994) and Janke & Balakumar (2000), who estimated the primary
state by means of PSE computations, do not provide a detailed description of the
procedure used to define the SLST primary state. Malik & Chang (1994) mention,
however, that dropping the wall-normal velocity of the primary state significantly
increases secondary amplification rates. Messing (2004) adopted the vv-fixed approach.
Koch et al. (2000) obtained the SLST primary state from equilibrium solutions of the
primary perturbations, which are already constant in the xv-direction and also fulfil
the continuity equation. They merely took the equilibrium solutions as they were and
did not need an extraction procedure.

5. Comparison of SLST and DNS
5.1. The steady fundamental case

Direct numerical simulations have been carried out introducing low-amplitude
background pulsing within the saturation region of the steady fundamental case
documented in § 4.1. Unsteady harmonic waves with ω = hω0, h = 1, . . . , 50, γ = ±γ0

(ω0 = 6 and γ0 = 52.4) were perturbed at x = 3 in the DNS case Steady+Pulse.
Restricting the secondary forcing to the first spanwise harmonic γ = ±γ0 was not
a limiting factor, since unsteady modes with higher spanwise wavenumbers could be
readily generated by nonlinear interaction of the perturbed modes with the high-
amplitude primary perturbation. Also, the relative phase of the perturbed waves
could be chosen arbitrarily since no interaction can be expected between secondary
perturbations with different frequencies, as far as linearity in the sense of the SLST
is ensured. Discretization parameters were identical to those for the simulations
of the primary state (�x = 0.1309 × 10−2 and �ymin = 0.1147 × 10−3, γmax = 13γ0,
�t = 3.49 × 10−4).

The growth of secondary modes downstream of x = 3.0 becomes evident in figure 9,
where t-modal amplitudes of the streamwise velocity components ũ′

s (maximum values
over y and z) are plotted as functions of the x-coordinate. The maximal growth rates
are achieved by high-frequency modes (ω ≈ 120). In spite of lower initial amplitudes,
which are due to a decrease in the receptivity for increasing frequency, curves for
ω ≈ 120 soon rise over those associated with lower frequencies. The delayed explosive
growth of modes ω > 180 for x > 3.5 is nonlinearly induced by the leading modes
ω ≈ 120.

The SLST analysis has been carried out at the downstream position xSLST = 3.32,
for which the primary state has been documented in § 4.1. Figure 9 shows that at that
position, near-field effects connected to the secondary forcing at x = 3 have already
died out and secondary perturbations are still small enough to ensure linear behaviour
(modal amplitudes lower than 0.01%). The vortex-oriented system was defined by
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Figure 9. Downstream development of the modal amplitudes ũ′
s,(h) from Fourier expansion

in time (maximum over y and z, 0 � ω � 240, �ω = 12) for case Steady+Pulse. The inset shows
the time signal of the pulsing in physical space.

setting ϕv = 45.86◦ in agreement with the results of § 4.1. The vv-fixed and the wv-
fixed approaches were considered to define the primary state. As far as numerical
discretization is concerned, the Fourier expansion in the zv-direction was truncated
at the thirteenth harmonic for both primary state and secondary perturbation as in
the DNS. The step size in the wall-normal direction was �y = 0.6593 × 10−3 and the
upper edge of the integration domain was located at ye = 0.053.

Post-processing of the DNS results presented hereinafter refers to the rotated
reference system with origin in x0,r = xSLST = 3.32 and oriented as the vortex-oriented
reference system of the SLST: ϕr = ϕv = 45.86◦.

5.1.1. Wavenumbers and amplification rates

Spatial amplification rates Im(αr ) and wavenumbers Re(αr ) in xr -direction for the
unsteady harmonic components of the DNS flow field have been evaluated in analogy
with the SLST ansatz. (The subscript r indicates the reference system to which the
complex wavenumber αr refers. We do not use the subscripts r and i to indicate real
and imaginary part of a complex number.) We considered Fourier coefficients û′

r,(h)

of the velocity component u′
r parallel to the main vortex axis and, in analogy with

(2.3), computed αr = Re(αr ) + iIm(αr ) by setting

αr = −i
∂ ln û′

r,(h)

∂xr

∣∣∣∣
xr=0,y=ymax ,zv=zv,max

, (5.1)

where (ymax, zv,max) is the position in the plane xr = 0 at which |û′
r,(h)|xr=0 achieves

its maximum. The resulting values for Im(αr ) and Re(αr ) are compared in figure 10
to the corresponding quantities for spatially developing modes from the SLST (cf.
(2.4a)) for different definitions of the primary state. Results are reported only for the
most unstable modes of each type.

Perturbations developing in the DNS may be identified as type III modes in the low-
frequency range (ω < 60) and as type I modes for higher frequencies. The divergence
of the DNS amplification rates for ω > 220 is due to nonlinear generation of those
modes through the leading ones (ω ≈ 120). However, the agreement between theory
and DNS is not unequivocal. On the one hand, amplification rates from the DNS
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Figure 10. (a) Spatial amplification rates and (b) wavenumbers in the xr = xv direction
(ϕr = ϕv = 45.86◦) from SLST according to the wv-fixed approach (solid lines), and the vv-fixed
approach (dashed lines), and from DNS (dots) as functions of the frequency for unstable
secondary modes.

are significantly larger than those from the theory (figure 10a), which moreover for
the type I mode strongly depend on the approach considered for the definition of the
primary state. On the other hand, a perfect matching is found for the wavenumbers
(figure 10b), independent of the approach.

We would expect the most unstable modes according to the SLST to develop in the
DNS. This is indeed the case if DNS results are compared to amplification rates from
the SLST for the wv-fixed approach. In the former, no type II modes are observed,
and in the latter, type I modes achieve, for any frequency, larger amplification rates
than type II modes. On the contrary, disagreement is given between DNS and the
vv-fixed apprach, according to which type II modes are more strongly amplified than
type I modes for ω > 170. Evidently, the determination of the most amplified mode is
not unequivocal within the margin of uncertainty connected to the definition of the
primary state in SLST. In the light of these results it seems reasonable to explain the
discrepancies observed by different authors with respect to the relative amplification
rates of type I and type II modes as a consequence of the inaccuracy in the SLST
results.

The dispersion relations in figure 10(b) are approximated well by straight lines
through the origin so that all modes of a given type are characterized by similar
values of the phase and group velocities (cph,v and cgr,v , respectively), independently
of their frequencies. In general, type I (cph,r ≈ 0.9) and type II modes (cph,r ≈ 1.1) are
faster than type III modes (cph,r ≈ 0.5). Similar values have been found by Koch et al.
(2000).

5.1.2. Amplitude distribution

In accordance with the SLST ansatz (cf. (2.3)), normalized amplitude distributions
over the plane xr = 0 for the unsteady harmonics û′

r,(h), h > 0, of the DNS flow field,
are compared in figure 11 to the corresponding component üv of SLST eigenfunctions
for the same frequency (see also (2.4a)). Data refer to the most amplified modes of
each type. All displayed SLST eigenfunctions have been obtained by defining the
primary state according to the wv-fixed approach; however, eigenfunctions resulting
from the vv-approach have been found to be nearly identical.

The eigenfunction shapes confirm the identification of the dominating instability
as a type III mode at moderate frequencies (ω = 36, figure 11b) and as a type I mode
at higher frequencies (ω = 120, figure 11a). The agreement between DNS and SLST
is nearly perfect in both cases. The slight downward shift of the DNS amplitudes
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Figure 11. Normalized ür -amplitude distributions for unstable secondary modes from SLST
(lines, �= 0.2) and DNS (shaded, �= 0.2) in a plane normal to the primary-vortex axis
(ϕr = ϕv = 45.86◦). The primary state for the SLST has been extracted according to the wv-fixed
approach. The horizontal dotted line denotes the undisturbed boundary-layer thickness.
(a) Type I: Re(αr ) ≈ 146, ω ≈ 132; (b) Type III: Re(αr ) ≈ 72, ω ≈ 36; (c) Type II: Re(αr ) ≈ 162,
ω ≈ 170.

may be justified considering that in the DNS, perturbations develop along the x-
direction and, before reaching the plane considered for the visualization, cross regions
characterized by lower boundary-layer thicknesses. Amplitude distributions similar to
those associated with type II modes (figure 11c) were not observed for any frequency
in the DNS.

5.2. Unsteady fundamental case

Validation of the secondary stability theory for the unsteady fundamental case has
been achieved on the basis of the unsteady primary state described in § 4.1. Post-
processing of the DNS flow field and SLST computations were thereby carried out
referring to the system (xm, y, zm) translating in the z-direction with the phase velocity
cm = ω0/γ0 of the primary perturbation (see § 2.1).

Analogously to § 5.1, secondary modes have been triggered in the DNS case
Unsteady+Pulse at x = xm =3 by perturbing low-amplitude harmonic waves with
ωm = hmω0, hm = 1, . . . , 50, and γm = ±γ0 (ω0 = 6, γ0 = 52.4). (When defining the
secondary perturbation, reference is made to modal components from Fourier
expansions in the moving system. Frequencies and wavenumbers from expansions
in the fixed system would be (h, k) = (hm + km, km), see Wassermann & Kloker 2003).
The SLST analysis has been carried out extracting the primary state from the
plane xSLST,m = 3.32 and the vortex-oriented reference system was defined setting
ϕv,m = 37.77◦. Discretization parameters for both DNS and SLST were identical to
those in § 5.1.

Figure 12 shows the amplitude development of the t-modal components ũ′
m,s,(h).

Since the Fourier expansion is computed in the moving system, the frequency ωm = 0
corresponds to the primary perturbation, which is steady in that system. Similarly to
the steady fundamental case, frequencies ωm ≈ 120 undergo the strongest amplification
and dominate in spite of the fact that, owing to receptivity effects, their amplitudes
are initially lower than those of low-frequency modes. The position xSLST,m = 3.32
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Figure 12. Downstream development of the modal amplitudes ũ′
m,s,(hm) from Fourier
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Figure 13. (a) Spatial amplification rates and (b) wavenumbers in the xm,r = xm,v direction
(ϕm,r = ϕm,v = 37.77◦) from SLST according to the wv-fixed approach (solid lines), and the
vv-fixed approach (dashed lines), and from DNS (dots) as functions of the frequency for
unstable secondary modes.

chosen for the comparison of DNS and SLST lies in a region where exponential
growth is well established for secondary modes and amplitudes are still small.

Post-processing of the DNS results has been carried out referring to the rotated
moving reference systems (xr,m, y, zr,m) with origin in xr,m,0 = xSLST. Fourier modal
components are computed for flow quantities expressed as functions of the coordinates
of the moving systems.

5.2.1. Wavenumber and amplification rates

Amplification rates and streamwise wavenumbers for secondary modes from DNS
and SLST are plotted in figure 13. Amplification rates from the DNS are evaluated
on the basis of the spatial development of the modal amplitudes u′

m,r,(h) in the
xm,r -direction, analogously to (5.1). Perturbations developing in the DNS are clearly
found to be type I modes, but also in this case agreement between DNS and SLST
is quantitatively not unequivocal. Although the dispersion relations match nearly
perfectly, discrepancies are found with respect to the amplification rates. Differences
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Figure 14. Normalized üm,r -amplitude distributions for unstable secondary modes from SLST
(lines, �= 0.2) and DNS (shaded, �= 0.2) in a plane normal to the primary-vortex axis
(ϕm,r =ϕm,v = 37.77◦). The primary state for the SLST has been extracted according to
the wv-fixed approach. The horizontal dotted line denotes the undisturbed boundary-layer
thickness. (a) Type I: Re(αm,r ) ≈ 162, ωm ≈ 120; (b) Type II: Re(αm,r ) ≈ 174, ωm ≈ 156.

between DNS and SLST, and the sensitivity of the latter on the approach used for
the definition of the primary state are smaller than in the steady fundamental case.

Type I modes are the most amplified instabilities for all frequencies and no unstable
type III mode is found. Again, phase and group velocities are almost constant for
given modes and slightly lower than in the steady case, being cph,m,r ≈ 0.7 for type I
modes and cph,m,r ≈ 0.9 for type II modes. This is only partially because cph,m,r is
computed here with respect to the moving reference system (xm, y, zm) which moves
with respect to the fixed system (x, y, z) with a positive velocity component cm,r in
the xm,r -direction (cm,r = cm sinϕm,r = ω0/γ0 sin ϕm,r = 0.070).

5.2.2. Amplitude distributions

Normalized amplitude distributions from DNS and SLST are compared in figure 14.
DNS results refer to amplitudes from a Fourier expansion in time of the perturbation
velocity u′

m,r (modal components û′
m,r,(h), h > 0). Eigenfunctions üv,m from the SLST

have been obtained defining the primary state according to the wv-fixed approach
and refer to the type I and type II modes already discussed in the previous section.
Apart from the slight downward shift of the DNS eigenfunctions already observed
in the steady case, the agreement between DNS and SLST with respect to the type I
mode is nearly perfect. Since the amplification rates of type II modes are lower than
those of type I modes, the former could not be observed in the DNS.

6. Origin of the inexactness of SLST amplification rates
We investigated the origin of the deviations observed in § 5 between amplification

rates from DNS and SLST. First of all, errors in the numerical procedures were ruled
out showing that both the DNS and the SLST provide identical results when the
flow field of the former reproduces the simplified configuration of the latter. In a
second step, the influence of different simplifying assumptions in the definition of
the SLST problem has been investigated. Only results for cases with steady primary
perturbations are presented, but there is little doubt that analogous results hold also
in the unsteady case.

The linearized code with three-dimensional spanwise-periodic base flow has been
used for all DNS presented in this section. In all cases, the base flow was set equal to
the primary state of the SLST, which was possible since the perturbation formulation
of the DNS does not require the base flow to be a solution of the Navier–Stokes
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Figure 15. (a) Spatial amplification rates and (b) wavenumbers in the x̌ = xv direction
(ϕ̌ = ϕv = 45.86◦) from SLST (lines) and from adapted DNS (case Adapted-vortex-oriented,
symbols) as functions of the frequency. The primary states for the SLST and the three-
dimensional base flows for the DNS have been defined according to the wv-fixed approach
(solid lines, dots), the vv-fixed approach (dashed lines, circles) and to the vv-wv-fixed approach
(only DNS, squares).

equations, exactly as in the SLST. All results have been obtained for primary states
corresponding to the steady fundamental case of § 4.1 at xSLST = 3.32.

Discretization parameters for DNS and SLST were identical to those of § 5 with
the exception of the wall-normal discretization for the DNS. Since the primary vortex
with its discretization-critical near-wall region was included in the base flow, the step
size in the wall-next block could be doubled (�ymin = 0.2295 × 10−3) and the time
step could be correspondingly increased (�t = 6.54 × 10−4). Finally, since the primary
state was invariant in the streamwise direction, the position at which secondary
perturbations were initiated is not significant, as long as undue interactions with inlet
or outflow boundaries are prevented. In agreement with § 5, results are presented
referring to the vortex-oriented reference system (ϕr = ϕv = 45.86◦).

6.1. Comparison of SLST and adapted DNS

The base flow for the DNS case Adapted-vortex-oriented reproduced exactly the
primary state for the SLST computation. The reference system (x̌, y, ž) for the DNS
was rotated with respect to the standard plate-oriented system and identical to the
vortex-oriented system considered for the SLST computations (ϕ̌ =ϕv = 45.86◦, see
figure 18). The spanwise periodic base flow [ǔb, v̌b, w̌b]

T (x̌, y, ž) was defined according
to the vv-fixed, the wv-fixed and the vv-wv-fixed approaches. The actual definition
followed (4.4), (4.5) and (4.6) after substitution of u̇ with ǔb, xv with x̌ and so on. SLST
computations were carried out for both the vv-fixed and the wv-fixed approaches.

Results for the adapted DNS and for the corresponding SLST computations are
presented in figure 15. The agreement is perfect, both for the vv-fixed and the wv-fixed
approaches. Amplification rates for the vv-wv-fixed approach, which cannot be com-
puted within the wall-normal-velocity–wall-normal-vorticity formulation of the SLST
code, are intermediate between those for the vv-fixed and the wv-fixed approaches.
Streamwise wavenumbers collapse for all approaches. As we may expect from the good
agreement between SLST and standard DNS in figure 11, the agreement of SLST and
adapted DNS with respect to the amplitude distributions is perfect and is not shown.

Figure 15 rules out inaccuracies of the numerical solutions or of the Gaster
transformation, (2.4), used to convert temporal SLST amplification rates into spatial
ones (see also Koch et al. (2000) for a validation of the Gaster transformation) as
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possible causes for the deviations between non-adapted DNS and SLST. Errors in the
SLST evaluation of the amplification rates may only be attributed to the simplified
representation of the primary state.

6.2. Influence of the periodicity and spatial-amplification direction

Differences in the choice of the directions of exponential growth and periodicity
for the secondary perturbation might be causes of discrepancy between DNS and
SLST. In this section, we show that this is not the case. Periodicity is indeed neither an
intrinsic nor a necessary characteristic of the instability. As a collateral result, we show
that the investigation of detuned modes is futile when considering crossflow-induced
secondary instabilities since results for the tuned problems are already exhaustive.
Both results are trivial conclusions if it can be shown that each single maximum in
the periodic eigenfunctions of the tuned problems (see figure 11) actually represents
an independent eigenfunction of the stability problem, developing independently from
neighbouring maxima and interacting only with the primary vortex next to it. After
reviewing results from the literature, we turn to the verification of this statement and
then derive the implications we started from.

Koch et al. (2000) carried out spatial SLST computations assuming exponential
amplification in chord direction (x) and periodicity in spanwise direction (z), and
showed that the resulting amplification rates were equal to those obtained by
converting temporal ones by means of a generalized Gaster transformation. Starting
from the consideration that in a temporal analysis no spatial amplification is given
and that the flow is periodic in all wall-parallel directions, we observe that the
Gaster transformation used by Koch et al. (2000) to compute spatial amplification
rates Im(αS) in the x-direction is equivalent to that given in (2.4) for modes growing
exponentially in the xv-direction, but rescaled in order to take account of the stretching
factor ∂xv/∂x = 1/ cos ϕv:

Im(αS) =
∂ ln | ˆ̈u(h)|

∂x
=

∂ ln | ˆ̈u(h)|
∂xv

∂xv

∂x
= Im(αv,S)

1

cos ϕv

, (6.1)

where Im(αS) and Im(αv,S) are the spatial amplification rates in the x and xv-directions,
respectively. A similar transformation would hold if the perturbation growth was
indeed in the xv-direction and the fact that results obtained this way were confirmed
by spatial computations, where amplification was imposed in the x-direction, is a first
hint that the choice of the exponential-growth and periodicity directions might be
irrelevant for the development of secondary instabilities.

The reciprocal independence of secondary-perturbation maxima may be deduced
from figures 16 and 17, where results from figure 10 (case Single-λ0,v) are compared to
results from an SLST analysis considering a primary state with doubled fundamental
wavelength in the zv-direction (case Double-λ0,v , the number of harmonics for
discretization of the zv-direction has been correspondingly doubled). One wavelength
of case Double-λ0,v contains two primary vortices, where one has been manipulated
by suppressing its perturbation over a limited zv-interval. The velocity field has been
multiplied by the function [1 − h(zv)], where h(zv) is a Hanning window stretching
over the intervals enclosed by vertical lines in figure 16. The perturbation maximum
at the side of the unmodified right-hand vortex is still an eigensolution of the stability
problem with nearly identical eigenvalue, even if the maximum next to the modified
left-hand vortex has been completely suppressed. More exactly, the eigenfunction
associated to the manipulated vortex has been modified shifting its eigenvalue, so
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Figure 16. Normalized üv-amplitude distributions for secondary modes from SLST
computations for case Single-λ0,v (lines, �= 0.2) and case Double-λ0,v (shaded without lines,
�= 0.2) in a plane normal to the primary-vortex axis (ϕv = 45.86◦). The primary state for
the SLST has been extracted according to the wv-fixed approach and manipulated for case
Double-λ0,v in the regions enclosed by vertical lines. The horizontal dotted line denotes
the undisturbed boundary-layer thickness. (a) Type I: Re(αv) = 146, ω ≈ 132; (b) Type II:
Re(αv) = 162, ω ≈ 170; (c) Type III: Re(αv) = 72, ω ≈ 36.

III

I

II

(a) (b)

III

I

II

100 200 300 0 100 200

12

8

4

0

R
e(

α
v)

ω ω

–I
m

 y
(α

v)

300

200

100

Figure 17. (a) Spatial amplification rates and (b) wavenumbers in the xv-direction (ϕv =
45.86◦) from SLST computations for case Single-λ0,v (solid lines) and case Double-λ0,v (dashed
lines). See caption of figure 16 for details of the definition of the primary states.

that the superposition of the two eigenfunctions associated to the two neighbouring
vortices is not an eigenfunction itself any more.

The moderate deviations in the amplification rates of figure 17 are probably due
to the limited spanwise discretization. Indeed, the amplitude decay of higher Fourier
harmonics from the spanwise discretization of the type I mode in case Double-λ0,v is
maximal for frequencies 30 � ω � 60, which is also the range where the agreement



252 G. Bonfigli and M. Kloker

between amplification rates is nearly perfect. Moreover, owing to the non-locality of
the Fourier discretization used in the zv-direction, in the case of not fully adequate
discretization, the manipulation of the primary state in a limited region is not possible
without influencing the whole flow field. However, this inexactness does not affect the
meaning of the present results. Indeed, there is no doubt that the single-maximum
eigensolution of case Double-λ0,v would be an eigensolution if the primary flow had not
been manipulated. This implies that the eigensolution of case Single-λ0,v is actually
a superposition of two single-maximum eigenfunctions of case Double-λ0,v , shifted
by λ0,v with respect to each other. This is strictly true, independent of numerical
inaccuracies.

There is no alternative to the conclusion that each perturbation maximum represents
an independent eigenfunction and that amplitudes connected to each maximum
rapidly decay in the zv-direction. If both statements are true, we may interpret
the periodic eigenfunctions of both Single-λ0,v and Double-λ0,v as superpositions
of identical single-maximum eigenfunctions shifted with respect to each other by
multiples of λv,0 in the zv-direction. Indicating with

f̈ loc(t, xv, y, zv) = ˆ̈f loc(y, zv) exp(i(αvxv − ωt)), αv ∈ �, ω ∈ �, (6.2)

a localized single-maximum eigensolution of the temporal or spatial stability problem,
the infinite sum

f̈ λ0,v
(t, xv, y, zv) =

+∞∑
k = −∞

ˆ̈f loc(y, zv − kλ0,v) exp(i(αvxv − ωt)), (6.3)

provides a λv,0-periodic eigensolution for case Single-λ0,v , while a 2λv,0-periodic
eigensolution for case Double-λ0,v is obtained, restricting the summation to odd
or even values of the index k. Spatial decay of the single-maximum eigenfunctions
must be fast enough to ensure convergence of the sum in (6.3). If, on the contrary, any
of the two statements fails, no explanation can be given for the observed matching
of the results from cases Single-λ0,v and Double-λ0,v . We then conclude that both
statements are valid.

A first verification of the rapid spatial decay of unstable eigenfunctions is provided
by the near-identity of the common amplitude maxima from cases Single-λ0,v

and Double-λ0,v . Evidently, in case Double-λ0,v , the summed contributions of all
suppressed eigenfunctions at positions corresponding to maxima of non-suppressed
eigenfunctions is negligible.

We now turn to the deduction of the implications. The independence of SLST
results on the choice of the periodicity direction follows from the consideration
that eigenfunctions with periodicity in any direction, except xv , may be obtained by
properly superposing independent single-maximum eigenfunctions, for the case of a
periodic primary state. We may construct a periodic eigenfunction f̈ ξ with arbitrary
periodicity directions by setting

f̈ ξ (t, xv, y, zv) =

+∞∑
k = −∞

ˆ̈f loc(y, zv − kλ0,v) exp(i[αv(xv − kξ ) − ωt)]), ξ ∈ �. (6.4)

Clearly the single-maximum eigenfunction f̈ loc, the zv-periodic eigenfunction f̈ λ0,v

from (6.3), and f̈ ξ are all expressions of the same instability phenomenon. Spatial
amplification is in all cases in the xv-direction.
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Eigensolutions f̈ σ for the detuned problem can be constructed analogously to f̈ ξ .
For a given real detuning coefficient σ , we set

f̈ σ (t, xv, y, zv) = exp(iσγ0,vzv)

+∞∑
k=−∞

ˆ̈f loc(y, zv − kλ0,v) exp(i(αvxv − ωt))

exp(iσγ0,v(zv − kλ0,v))

=

+∞∑
k=−∞

exp(iσγ0,vkλ0,v)
ˆ̈f loc(y, zv − kλ0,v)(exp(i(αvxv − ωt))), σ ∈ �,

(6.5)

where the first identity shows that f̈ σ , being the product of the detuning term and of a
zv-periodic function, fulfils the assumptions of the detuned problem, while the second
identity proves that it is also an eigensolution of the stability problem, resulting from
the superposition of eigenfunctions with identical eigenvalues.

Both the tuned and the detuned problems can capture instabilities characterized by
spatially localized eigensolutions as f̈loc, providing equivalent results. Of course, the
detuned case would be relevant for the investigation of non-periodic non-localized
modes, which could not be captured by the tuned case, but, to our knowledge, no
evidence is given for the existence of such instabilities. The detuned mode f̈σ develops
continuously from the tuned mode f̈λv,0

, when the detuning coefficient σ progressively
deviates from zero. Excluding unlikely eigenvalue-crossing or bifurcation phenomena,
it would therefore be the mode obtained from an eigenvalue tracking procedure
iterating over σ and starting from the tuned solution. From this, we tend to words
interpreting the results of Koch et al. (2000), according to which detuned modes
may achieve slightly higher amplification rates than tuned ones, as a consequence of
discretization errors similar to those causing deviations between our cases Single-λ0,v

and Double-λ0,v in figure 17.
We conclude by documenting results for two DNS cases with identical primary states

expressed in different reference systems. Since periodicity and spatial development in
the DNS are always prescribed along the reference axes x and z, respectively, this
provides a direct verification of the general results presented above. The set-up of case
Adapted-vortex-oriented has been presented in § 6.1. In case Adapted-plate-oriented the
same three-dimensional base flow (i.e. the primary state) was expressed with respect
to a plate-oriented coordinate system ( ˇ̌x, y, ˇ̌z) with ˇ̌ϕ = 0, which was possible since the
base flow from case Adapted-vortex-oriented is periodic in ž and constant in x̌, and

thus periodic also in any other direction, including ˇ̌z. A sketch of the configurations
considered in the two DNS cases is provided in figure 18. Results for amplification
rates and streamwise wavenumbers are compared in figure 19 and found to be nearly
identical. In the DNS frame, the relative shift of the single-maximum eigenfunctions,
i.e. the value of ξ in (6.4), is determined by the orientation of the perturbations strip

(parallel to the ž or ˇ̌z-axis) where all superposed eigenfunctions possess the same
initial amplitude.

6.3. Influence of modifications in vv and wv

The relevant deviations between the vv-fixed and the wv-approaches demonstrate the
high sensitivity of secondary amplification rates to small modifications of the primary-
state velocity components v̇v and ẇv normal to the primary-vortex axis. We investig-
ated this issue systematically, scaling the velocity components v̇v and ẇv of the primary
state in the plane normal to the main vortex axis. The reference primary state was
defined according to the wv-fixed approach. Results are presented in figures 20 and 21.
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Figure 18. Reference systems, integration domains (grey), and schematic representation
of the primary vortices (hatched) for (a) case Adapted-vortex-oriented and (b) case
Adapted-plate-oriented. Dashed lines represent the plane x = xSLST.
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Figure 19. (a) Spatial amplification rates and (b) wavenumbers in the x̌ = xv direction (ϕ̌ =
ϕv = 45.86◦) from SLST (lines), from case Adapted-vortex-oriented (dots) and from case
Adapted-plate-oriented (circles) as functions of the frequency. The primary state for the SLST
and the three-dimensional base flows for the DNS have been defined according to the wv-fixed
approach.
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Figure 20. Temporal amplification rates as a function of the scaling factor χ multiplying
v̇v and ẇv . For scaled velocity components ḟ holds ḟ = χḟ 0, where ḟ 0 is the corresponding
component of the reference primary state, defined according to the wv-fixed approach.

The high sensitivity of the problem is confirmed and deviations from the reference
case of over 50% are observed when the scaling factor χ falls to zero, which
is in agreement with findings by Malik & Chang (1994). The dependency of the
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Figure 21. Normalized ür -amplitude distributions (�= 0.2) for secondary modes from
figure 20 for χ = 0.5 (solid lines) and χ = 1.5 (dashed lines). (a) Type I: Re(αr ) ≈ 146, ω ≈ 132;
(b) Type III: Re(αr ) ≈ 72, ω ≈ 36; (c) Type II: Re(αr ) ≈ 162, ω ≈ 170.

amplification rates on χ is, however, not unequivocal since type II modes behave in
the opposite way to type I and type III modes. The shapes of the eigenfunctions of
all modes alter significantly with the scaling factor χ .

The relation between primary state and secondary perturbation is clearly not trivial
and we need a thorough understanding of the instability mechanism (see § 8) in order
to justify the results presented here or to explain the strong differences in the results
for the vv-fixed and the wv-approach. At this point, we only notice that figure 20
hints at transition control. Secondary amplification rates of the most amplified type I
mode might be reduced, or even suppressed, by properly modifying the small cross-
plane velocity components, which may be effectively achieved by moderate suction or
blowing at the wall.

7. Structures connected to high-amplitude secondary perturbations
After having validated SLST results in the region characterized by low-amplitude

secondary perturbations, the focus of the discussion is now shifted towards the later
stages of the transition process. Discretization parameters for all DNS of this section
were identical to those used for the simulations of § § 5.1 and 5.2 with the exception
of the spanwise discretization, which has been enhanced up to γmax = 21γ0 in order
to improve the resolution of secondary structures in their late stages of development.
SLST eigenfunctions originate from the computations of § § 5.1 and 5.2.

7.1. The steady fundamental case

7.1.1. Secondary structures induced by one single type I mode

In order to make the connection between coherent structures and SLST modes
univocal, DNS have been carried out disturbing one single frequency in each run, so
that the corresponding mode could develop without interacting with other instabilities.
In case Steady+ω120, the frequency ω =120 (h = 20), i.e. one of the most amplified
type I modes, was perturbed at x = 3. Its development in the downstream direction
was similar to that for case Steady+Pulse (figure 9).

In the λ2-visualization of figure 22, secondary finger-like vortical structures, similar
to those also observed by Wassermann & Kloker (2002), Wintergerste (2002) and
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Figure 22. Visualization of vortical structures (λ2-isosurfaces, λ2 = −10) for case
Steady+ω120: x0,r =1.5, z0,r = 0.10, ϕr = 45.86◦.
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Figure 23. Visualization of vortical structures (λ2-isosurfaces, λ2 = −10) for the superposition
of primary state and a type I mode (ω ≈ 120, Re(αv) = 134, maxt,x,y,z{|üv |} = 0.06) from the
SLST analysis of the steady fundamental case (xSLST =3.32, ϕv = 45.86◦).

Hein (2004) develop at the side of the primary vortex, exactly in the region where the
eigenfunction of the generating mode achieves its maximal amplitude (see figures 5
and 11a). In contrast to the simulations by Wassermann & Kloker (2002), who
initiated secondary instabilities by a multi-frequency pulse-like perturbation, and by
Wintergerste (2002) and Hein (2004), who superposed steady and unsteady primary
unstable modes losing the streamwise invariance of the primary state, the secondary
mode preserves its streamwise quasi-periodicity up to the late stages of transition. An
array of identical secondary structures convecting in the xv-direction can be observed.

Structures similar to those of figure 22 may be found in figure 23, where the
λ2-technique has been applied to the flow field obtained by superposing the xv-
invariant primary state of the SLST analysis (xSLST = 3.32, see figures 10 and 11)
and the corresponding secondary perturbation for a type I mode with ω ≈ 120
and Re(αv) = 134. Spatial amplification has been neglected and the two-dimensional
eigenfunction has been scaled to finite amplitudes. The observed similarity is not
trivial since nonlinear secondary-disturbance interactions and the additional primary-
state distortion are neglected in the flow field of figure 23. The present results provide
a legitimation a posteriori for visualizations by Balachandar et al. (1992) and Malik &
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Figure 24. Visualization over the section plane xr = 3.57 of figure 22: [w̃r , ṽr ]-vectors;
ω̃x,r -isocontours (shaded); λ2-isocontours (thick lines, λ2 = −10). The horizontal dotted line
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Figure 25. Downstream development of the modal amplitudes ũ′
s,(h) from Fourier expansion in

time (maximum over y and z, 0 � ω � 240, �ω = 30) for case Steady+ω30 (steady fundamental
case plus single low frequency).

Chang (1994), who tried to characterize secondary structures by considering finite-
amplitude SLST eigenfunctions.

Further insight into the features of the secondary structures of figure 22 is provided
in figure 24. Contour plots of the streamwise vorticity ω̃x,r are shown over the plane
xr = 3.57 of figure 22 together with crosscuts of the λ2-isosurface from that same
figure and a vector plot for the in-plane component of the velocity. Clearly visible
are the crosscuts of λ2-isosurfaces connected to two secondary structures. The most
upstream one crosses the section plane with its upraised head (marked as A). The
most downstream one is intersected in the middle of its trunk (marked as B). The
streamwise vorticity associated to both secondary vortices is positive, i.e. their rotation
direction is opposite to that of the primary vortex.

7.1.2. Secondary structures induced by a single type III mode

Flow structures induced by type III modes have been investigated in case Steady+
ω30, where only the secondary mode ω = 30 (h = 5) has been triggered at x = 3.
Thereby initial amplitudes have been increased with respect to case Steady+ω120
in order to compensate for the relatively low amplification rates of the considered
mode. The streamwise development of the perturbation is shown in figure 25.
Type III modes are clearly not as efficient as type I modes in triggering the laminar
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Figure 26. Visualization of vortical structures (λ2-isosurfaces, λ2 = −10) for case
Steady+ω30: x0,r =1.5, z0,r = 0.10, ϕr = 45.86◦.
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Figure 27. Visualization of vortical structures (λ2-isosurfaces, λ2 = −10) for the superposition
of primary state and a type III mode (ω ≈ 30, Re(αv) = 62, maxt,x,y,z{|üv |} = 0.12) from the
SLST analysis of the steady fundamental case (xSLST =3.32, ϕv = 45.86◦ ).

breakdown, which indeed does not take place before x = 4.2 and is not initiated by
mode ω = 30, but rather by its first superharmonic ω = 60, which is already of type I.

A λ2-visualization of case Steady+ω30 is shown in figure 26. The primary vortex is
strongly deformed into a rope-like structure with different vortical filaments winding
around the main core. A comparison of figures 26 and 27 confirms that also in this
case qualitative similarity is given between the real structures and those obtained by
visualizing finite-amplitude modal eigenfunctions from the SLST.

The rotation directions of the vortex filaments building up the rope-like structure
of figure 26 is made evident by the contour plot of the streamwise vorticity shown
in figure 28 for the plane xr =3.57. Even if crosscuts of λ2-isosurfaces associated
with filaments characterized by both positive (marked as A and B) and negative ωx,r

(marked as C, D and E) can be found, the most evident structures in figure 26 are
those possessing negative streamwise vorticity, i.e. rotating in the same direction as
the main vortex.

7.2. Unsteady fundamental case

7.2.1. Secondary structures induced by a single type I mode

Secondary structures associated with a high-amplitude type I mode in the unsteady
fundamental case are visualized in figure 29. The flow field originates from the
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Figure 28. Visualization over the section plane xr = 3.57 of figure 26: [w̃r , ṽr ]-vectors;
ω̃x,r -isocontours (shaded); λ2-isocontours (thick lines, λ2 = −10). The horizontal dotted line
denotes the undisturbed boundary-layer thickness.
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Figure 29. Visualization of vortical structures (λ2-isosurfaces, λ2 = −10) for case
Unsteady+ωm120: x0,m,r = 1.5, z0,m,r = 0.07, ϕm,r = 37.77◦.

DNS case Unsteady+ωm120, where only the frequency ωm = 120 (hm =20) has been
perturbed at xm = 3. The downstream development of the excited mode was similar to
that documented for case Unsteady+Pulse (figure 12). Secondary vortical structures
are visualized in figure 29, where analogies can be found with respect to structures
from type I instabilities of the steady fundamental case (figure 22). However, the
present structures, when considered in the plate-fixed coordinate system, convect in
the downstream direction and also follow the motion of the primary unsteady vortices
shifting in the z-direction. In the moving system chosen for the visualization, they con-
vect only in xm,r -direction. Again, good agreement is observed between real structures
and structures from finite-amplitude secondary modes visualized in figure 30. Finally,
figure 31 shows the rotation sense of the main secondary structures, which is opposite
to that of the primary vortex even if smaller co-rotating structures are also present.

8. Interpretation of the instability mechanism
The characterization presented above for structures originated by secondary

unstable modes provides a basis for the interpretation of the instability mechanism.
Again, we refer only to the steady fundamental case.

We claim that the instability mechanism for secondary CF instabilities is analogous
to the inviscid Kelvin–Helmholtz instability of the plane step-profile mixing layer (see
Drazin & Reid 2004) or to the shear-layer instability of the tanh-profile mixing layer
(Michalke 1964) and of jet flows (Michalke 1982). A substantiation of this hypothesis
is provided in the following by showing that characteristic features of the Kelvin–
Helmholtz scenario may be found also in the flow field associated to secondary CF
instabilities.
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Figure 30. Visualization of vortical structures (λ2-isosurfaces, λ2 = −10) for the superposition
of primary state and a type I mode (ωm ≈ 120, Re(αm,v) = 148, maxt,x,y,z {|üm,v |} = 0.12) from
the SLST analysis of the unsteady fundamental case (xm,SLST = 3.32, ϕm,v = 37.77◦).
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Figure 31. Visualization over the section plane xm,r = 3.21 of figure 29: [w̃m,r , ṽm,r ]-vectors;
ω̃x,m,r -isocontours (shaded); λ2-isocontours (thick lines, λ2 = −10). The horizontal dotted line
denotes the undisturbed boundary-layer thickness.

8.1. Identification of the vorticity layer

The unstable element in the step-profile mixing-layer is represented by a plane
infinitely thin vorticity layer at the boundary between two uniform streams with
different velocities. When an infinitesimal deflection from its plane configuration is
introduced, a self-induced process leads to the concentration of vorticity into discrete
straight co-rotating vortex cores, i.e. local maxima of the vorticity field associated to
eigensolutions of the stability problem, all of which lie in the plane of the original
layer. With regard to secondary CF instabilities, vortex cores associated to modal
eigenfunctions have been visualized in figures 23 and 27 for type I and type III modes,
respectively. For the analogy with the Kelvin–Helmholtz instability to hold, a vorticity
layer should exist in the flow field associated to the primary state. The vorticity
component tangent to the vortex cores (referred to as ω̇x,t in the following) should be
maximal in the neighbourhood of the cylindrical surface with generatrices parallel to
the primary-vortex axis (xv-direction) and cutting across the secondary vortex cores.

We determined the orientation of the secondary-vortex cores using a post-processing
tool by Linnick & Rist (1999), in which vortex cores are extracted from a given flow
field by tracking local minima in the corresponding λ2-field (Jeong & Hussain 1995).
The procedure was applied to flow fields associated to eigenfunctions from all three
instability types (figure 32). Classical λ2-visualizations of the flow field resulting from
the superposition of the secondary eigenfunctions and the primary state are shown in
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Figure 32. Secondary-vortex cores for type I (a–c, Re(αv) = 134), type II (d–f , Re(αv) = 162)
and type III (g–i, Re(αv) = 62). Left column: perspective view of the λ2 isosurfaces from the
flow field obtained superposing primary state and finite-amplitude secondary eigenfunctions
(λ2 = −10). Central column: vortex cores from the secondary-perturbation flow field (black
surfaces) and λ2-isosurface for the primary vortex (grey surface, λ2 = −10). Right column:
selected cores for further analysis (black surfaces) and λ2-isosurface for the primary vortex (grey
surface, λ2 = −10). The maximal amplitude maxt,x,y,z{|üv |} of the secondary eigenfunctions was
0.06 for type I and type II modes, 0.12 for type III modes.

left column (figure 32). The extracted vortex cores are visualized in the central column,
and the most significant one of each case, considered in the following for further
analysis, is shown in the right column. The choice of the structure to be investigated
is to some extent an arbitrary process. We selected well-developed structures, whose
shapes were closest to that of the structures from the λ2-visualization of the global
flow field. It is also worth mentioning that visualizations in the central column of
figure 32 present a streamwise periodicity with twice as many structures as in the
visualizations in the left column. Indeed, for each local extremum in the perturbation
vorticity there is always a corresponding identical extremum with opposite sign,
shifted in xv by half a wavelength. The vortex extraction procedure applied to the
perturbation flow identifies corresponding structures of extrema of both signs, but
in the global flow field only extrema enhancing the vorticity layer from the primary
state effectively lead to a secondary structure.

Components of the primary-state vorticity field in the direction parallel to the
secondary vortex cores are shown in figure 33. Since the vortex-core orientation varies
moderately over the length of type I and type II structures, only one representative
direction is considered in such cases. On the contrary, three different orientations are
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Figure 33. Vorticity component ω̇x,t of the primary flow (shaded) along the direction t
parallel to the vortex cores of the secondary structures from figure 32. The crosscut plane is
normal to the primary-vortex axis (ϕr =ϕv = 45.86◦). See sketch in figure for the definition of
the angles ϕt and ψt determining the direction t . Three different orientations of the vortex
core are considered for the type III structure. The orientation of the central section (d) has
been approximately estimated since the vortex-core-extraction procedure did not work there.
Normalized amplitudes of the modal eigenfunctions from figure 11 are also plotted (lines,
�= 0.2). (a) Type I: ϕt = ϕv + 18◦, ϕt = 12◦; (b) type II: ϕt =ϕv + 75◦, ψt = −25◦; (c) type III:
ϕt = ϕv − 11.5◦, ψt = 5.7◦; (d) type III: ϕt = ϕv , ψt = 60◦; (e) type III: ϕt = ϕv + 5.8◦, ψt = 5.7◦.

considered for the type III structure, one for the bottom (upstream) portion of the
structure trunk, one for the middle portion and one for the top (downstream) portion.
In all figures, isocontours of the normalized eigenfunction amplitudes are reported
for the corresponding secondary modes. According to the analogy with the Kelvin–
Helmholtz instability, the conjectured vorticity layer should cut through the amplitude
maxima of the secondary eigenfunction. The matching is evident in the case of the type
I and type II modes, for which the secondary eigenfunctions are centred on marked
vorticity maxima. As far as the type III mode is concerned, the situation is clear for
the bottom and middle sections, where the eigenfunction is overlaid on a minimum of
the vorticity field, but also, in the top region, the upper part of the eigenfunction lies in
a dark region (negative ω̇x,t ) enclosed between two lighter regions (less negative ω̇x,t ).

8.2. Reynolds number dependence

For an instability mechanism analogous to the inviscid Kelvin–Helmholtz instability,
we would expect viscosity to play a mainly damping role. Figure 34 shows the
dependence on the Reynolds number Re of the temporal amplification rates for the
secondary modes from figure 11. In all computations, the primary state was kept
constant for varying Re and equal to the one extracted from the DNS flow field for
the original value Re = 9.2 × 104. The modified Reynolds number entered only into
the computation of the secondary perturbation. Again, type I and type II instabilities
perfectly fulfil the expectations presenting monotonously growing amplification rates.
On the contrary, the type III mode, reaches a maximum in the amplification and
then stabilizes, becoming damped for Re > 3.8 × 105. In support of a connection
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Figure 34. Temporal amplification rates as a function of Re. The primary state has been
extracted according to the wv-fixed approach from the DNS flow field (Re =9.2 × 104) and is
kept constant for Re varying in the SLST analysis.
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Figure 35. Normalized üv-amplitude distributions of the type III mode for the most amplified
wavenumbers at Re = 5 × 105 (Re(αv) = 56, shaded, �= 0.2) and Re = 9.2 × 104 (Re(αv) = 72,
lines, �= 0.2 ). The crosscut plane is normal to the primary-vortex axis (ϕv = 45.86◦). The
primary state for the SLST has been extracted according to the wv-fixed approach. The
horizontal dotted line denotes the undisturbed boundary-layer thickness.

with an inviscid instability mechanism remains the fact that maximal amplification
rates (maximum over αv for constant Re, symbols in figure 34) decrease, but remain
positive for arbitrarily large Re. Furthermore, we also found a second type III mode
which becomes unstable only for relatively large Re, but then shows monotonously
growing amplification rates (type III-high-Re in figure 34).

Eigenfunctions for type I and type II modes remain practically unvaried over the
considered Re-range and need not be displayed. The amplitude distribution of the
type III mode for the most amplified streamwise wavenumber αv = 56 at Re = 5×105

is documented in figure 35, where also the eigenfunction from figure 11 (Re = 9.2×104,
αv = 72) is plotted for reference. Maximum amplitudes move away from the wall for
increasing Re, so that viscosity appears to be relevant in determining the development
of the instability in the near-wall region. Furthermore, a second amplitude maximum
similar to a type II mode appears in the eigenfunction, which is interesting since,
as one may see in figure 33, type II and type III develop from vorticity layers with
opposite sign. Eigenfunctions for the type III-high-Re mode are qualitatively similar
to the one displayed in figure 35.

8.3. Dependence on the shear-layer strength

If a scaling is applied onto the shear-layer profile of the Kelvin–Helmholtz problem,
the resulting eigenvalues, i.e. the amplification rates and frequencies of the instabilities,
depend linearly on the scaling factor. The persistence of this behaviour in the
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Figure 36. (a) Temporal amplification rates and (b) angular frequencies of the unstable modes
from figure 11 (fixed streamwise wavenumber) as functions of the scaling factor χ multiplying
all three components of the primary state. The reference primary state has been extracted
according to the wv-fixed approach.

secondary-instability context may be verified by scaling simultaneously all three
components u̇v , v̇v and ẇv of the primary state. Results are presented in figure 36.

The behaviour of type I and type II modes, for which amplification rates depend
almost exactly linearly on the scaling factor χ , matches perfectly the proposed Kelvin–
Helmholtz analogy. Deviations are observed for the type III mode. The offset from
the origin for all curves in figure 36(a) is plausibly due to the slightly stabilizing
influence of viscosity.

8.4. Motion of the secondary vortex cores

In the Kelvin–Helmholtz scenario, perturbations with non-zero streamwise
wavenumber represent the corrugation of the unstable vorticity layer, so that their
phase velocity must be equal to the convection velocity of the layer, which in turn is
determined by the Kelvin and Helmholtz vortex theorems. The situation is clearest
in cases with an infinitely thin vorticity layer, whose material velocity is equal to the
mean velocity of the two streams.

We identify in a first approximation the finite-thickness vorticity layer of the CF
scenario (see figure 33) with the cylindrical surface crossing the vortex cores of
figure 32 with generatrix parallel to the xv-axis. Furthermore, we assume each point
of that surface to be convected by the primary-state velocity field. This provides a
determination of the motion of the secondary vortex cores, which, if our assumptions
are correct, should match the motion prescribed by the SLST model, i.e. convection
in the xv-direction with velocity equal to the phase velocity cph,v of the considered
mode. A first hint is provided by the results of figure 10(b) if we consider that, for
waves convecting with a prescribed phase velocity, the angular frequency ω must be
proportional to the streamwise wavenumber Re(αv).

Let [xv(s) y(s) zv(s)]
T be a parameterization of the spatial curve describing any

of the vortex cores from figure 32 and let [u̇v(s) v̇v(s) ẇv(s)]
T be the primary-state

velocity in [xv(s) y(s) zv(s)]
T . The connection between the convection-induced motion

and the SLST motion requires then⎡
⎢⎣

cph,v

0

0

⎤
⎥⎦ =

⎡
⎢⎣

u̇v(s)

v̇v(s)

ẇv(s)

⎤
⎥⎦ + ǔ(s)

⎡
⎢⎣

tx,v(s)

ty,v(s)

tz,v(s)

⎤
⎥⎦ , (8.1)
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Figure 37. Primary-state velocity components and rigid-body velocity components (right-hand
side of (8.1)) at points of the vortex cores from figure 32. The function ǔ is computed imposing
the xv-component of (8.1) for type I and type III modes, and the zv-component for the type II
mode. The component of the rigid-body velocity directly determined by (8.1) is not plotted. The
variable on the abscissa is different in different figures. (a) Type I, Re(αv) = 134, cph,v =0.89;
(b) type II, Re(αv) = 162, cph,v = 1.05; (c) type III, Re(αv) = 62, cph,v = 0.49.

where ǔ(s) is a scalar function and [tx,v(s) ty,v(s) tz,v(s)]
T is the unity vector tangent

to the core line in [xv(s) y(s) zv(s)]
T . The tangent velocity ǔ may be determined

arbitrarily since it only represents a relative motion of the different points of the
vortex core along the core line itself. It does not affect the shape, the position, and
consequently the motion, of the vortex core as a whole.

We determined ǔ(s) from the component of (8.1) associated to the largest component
of the tangent vector [tx,v(s) ty,v(s) tz,v(s)]

T (tx,v for type I and type III modes, tz,v
for type II modes) and verified that the remaining components of the equation were
also fulfilled. The most relevant quantities involved in (8.1) are plotted in figure 37,
where the rigid-body motion [urb,v(s) vrb,v(s) wrb,v(s)]

T represents the right-hand side
of (8.1), ǔ having been determined as described above. Considering the approximation
due to the finite thickness of the vorticity layer, the fulfilment of (8.1) is in all cases
satisfactory. The yv and zv components of the right-hand side of (8.1) are close to zero
and, for the type II mode, the xv-component gives a good approximation of the phase
velocity of that mode. The wiggly behaviour of some curves is due to oscillations of
the vortex-core tangents from the extraction procedure.

8.5. Dependence on primary-state features other than the main shear layer

The Kelvin–Helmholtz analogy also provides an explanation for the sensitivity of
SLST results with respect to modifications of the primary state, i.e. for the deviations
between SLST and DNS in § 5 and the results of § 6.3. We illustrate two mechanisms,
through which alterations in velocity components not directly connected to the main
shear layer may induce comparatively large deviations in the secondary amplification
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Figure 38. Temporal amplification rates for (a) different values of v̇, (b) base flow profile u̇,
and normalized v̈-eigensolutions for (c) α =0.45, v̇ = 0.0 and (d) α = 0.45, v̇ = 0.2. Dashed lines
in (c) and (d) correspond to negative values, isolines v̈ = 0 are not plotted, �= 0.1.

rates. Plausibility checks on the basis of the results from the previous sections are
also provided. The discussion concentrates on type I and type II modes, for which
the Kelvin–Helmholtz analogy has been found to match more exactly.

8.5.1. Stabilizing effect of a velocity component normal to the main shear layer

In order to allow quantitative comparisons, we solved an artificial Kelvin–Helmholtz
stability problem with (periodic) tanh profile in the (x, y)-plane and a superimposed
constant velocity component in the direction normal to the main shear layer. The
unperturbed base flow was

u̇(x, y) =

+∞∑
k=−∞

(−1)k tanh
[
y −

(
k − 1

2

)
× 20

]
, v̇(x, y) =K ∈ �, (8.2)

which corresponds to two antisymmetric tanh profiles in y = ±10, periodically
repeated with a fundamental wavelength of λy = 40. The perturbation velocities ü

and v̈ were assumed to have the form

f̈ (t, x, y) = 2Re[ ˆ̈f (y) exp(i(αx − ωt))], α ∈ �, ω ∈ �, (8.3)

where ˆ̈f (y) is a complex periodic function. The stability problem was solved according
to the temporal approach considering the eigenvalue problem

−iω� ˆ̈v + u̇
∂� ˆ̈v

∂x
+ v̇

∂� ˆ̈v

∂y
− ∂2u̇

∂y2

∂ ˆ̈v

∂x
= 0, �= −α2 +

∂2

∂y2
. (8.4)

Discretization in the y-direction was achieved by means of Fourier expansions with
256 harmonics.

Results are presented in figure 38. A significant reduction of the amplification rates
can be observed for increasing v̇, which can be intuitively explained considering that
v̇ tends to convect the unstable vortex cores away from the shear layer, into a region
of the flow field where they are stable. The shape of the v̈-eigenfunctions is only
moderately affected.

A proper scaling is required in order to close the comparison between the Kelvin–
Helmholtz scenario and the secondary instability of CF vortices. For each problem
we defined an equivalent velocity jump �u̇eq proportional to the shear-layer thickness
h (estimated by visual inspection of figures 33 and 38b) and to the maximum absolute
value ζ̇max of the vorticity component ζ̇ normal to the shear layer (ζ̇ = ω̇z for the
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v̇ = 0.0 v̇ = 0.1 v̇ = 0.2 Type I Type II

ζ̇max 1 1 1 30 35
h 4 4 4 0.005 0.007

�u̇eq =
ζ̇maxh

4
1 1 1 0.037 0.061

�v̇n,max

�u̇eq

0.11 0.0065

Im(ω)max

ζ̇max

0.19 0.17 0.13 0.17; 0.26† 0.12; 0.12†

αmaxh 1.80 1.80 1.76 2.01; 2.09† 1.12; 1.25†

† Values for the SLST modes refer to the vv-fixed and the wv-fixed approaches, respectively.

Table 1. Rescaled quantities from the Kelvin–Helmholtz problems (v̇ = 0.0, v̇ = 0.1 and
v̇ = 0.2) and from the SLST problems for the type I and type II modes of figure 10.
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Figure 39. Primary-state component v̇n normal to the shear layer connected to the type I
(a, b) and type II (c, d) structures of figures 32 and 33. The angles ϕn and ψn (see figure
33 for definition) define the direction of v̇n. (a, c) v̇n according to the wv-fixed approach
(�= 0.004). v̇n from the wv-fixed approach minus v̇n from the vv-fixed approach (�= 0.0004).
Dashed lines correspond to negative values, thick lines give the eigenfunction associated to the
considered structures. (a) v̇n : ϕn = ϕv = 90◦, ψn = −55.5◦; (b) �v̇n : ϕn = ϕv +90◦, ψn = −55.5◦;
(c) v̇n : ϕn = ϕv + 90◦, ψn = 74.5◦; (d) �v̇n : ϕn = ϕv + 90◦, ψn = 74.5◦.

Kelvin–Helmholtz base flow, ζ̇ = ω̇x,t for the SLST primary state, see figure 33). We
then expect results from all problems to collapse if velocities are scaled with �u̇eq ,
lengths with h and temporal eigenvalues with ζ̇max .

Quantitative data are provided in table 1. Thereby v̇n is the velocity component
normal to the shear layer in the SLST primary states and �v̇n,max is the deviation
between the flow fields defined according to the vv-fixed and the wv-fixed approaches
in the regions of interest by the corresponding secondary eigenfunctions (see figure 39).
Maximal amplification rates Im(ω)max and the associated wavenumbers αmax are also
provided. For CF modes, the direction n is defined as the normal to the xv-axis
and to the secondary vortex cores from figures 32 and 33. The wavenumber α is
computed for the direction q normal to the vortex cores and lying in the shear-layer
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plane (α = αq = αv/ cos ϕv,q , where ϕv,q is the angle spanned by the xv-axis and the
q-direction).

The relatively large value of �v̇n,max/�u̇eq = 0.11 for the type I mode might well
be responsible for the differences between amplification rates from the vv-fixed
and the wv-fixed approaches. To a 38%-variation in Im(ω)max between the two
SLST approaches corresponds an 8% variation between Kelvin–Helmholtz problems
with v̇/�u̇eq = 0.0 and v̇/�u̇eq = 0.1 and a 21% variation between problems with
v̇/�u̇eq = 0.1 and v̇/�u̇eq =0.2. Notice that vn in figure 39(a) is only approximately
zero in the region of interest. On the other hand, the negligible value of �v̇n,max/�u̇eq

for the type II mode explains the moderate sensitivity of that mode with respect to
the definition of the primary state. Finally, the order-of-magnitude matching between
amplification rates and wavenumbers for Kelvin–Helmholtz and CF instabilities
confirms the correctness of the scaling, and of the analogy it relies on. In consideration
of the approximated character of the scaling procedure, better agreement cannot be
expected.

8.5.2. Modification of the vortex-core orientation

If alterations in the primary state are significant, a further mechanism becomes
relevant in determining the behaviour of the secondary instability. We notice that the
orientation of the unstable vortex cores is not given a priory in the SLST problem,
but rather is determined by the interplay of the unstable three-dimensional shear layer
embedded in the primary state and the rigid-body-motion requirement discussed in
§ 8.4. The shear layer may be unstable with respect to vortex cores associated to a
wide range of orientations, but only vortical elements for which (8.1) may be fulfilled
are eligible for exponential growth. Scaling v̇v and ẇv as in § 6.3, for example, does not
modify significantly the intensity of the shear layer, which is mainly connected with the
u̇v-component, but does determine deviations in the orientation of the vortical cores
fulfilling the rigid-body-motion condition. Since only the intensity of the shear layer
in the plane normal to the vortical core is in a first approximation relevant for the
instability, the amplification rates also vary with the scaling factor χ . The connection
between primary state, vortex-cores orientation, and secondary amplification rates is
not easily predictable and it is therefore not surprising that amplification rates for
type I and type II modes behave in opposite ways in figure 20. Of course, the effect
discussed above of alterations in the primary-state velocity component normal to the
shear layer should also be considered.

Two aspects of the result from § 6.3 may be adduced to confirm what has been
said. First, the relevant alterations in the eigenfunction shape in figure 21 is a
clear indication of modifications in the structure (shape, orientation) of the unstable
vortex cores. Secondly, we evaluated the orientation of the secondary vortex cores
for the type I mode and found a deviation of the tangent direction t from ϕt = ϕv +
18◦, ψt = 12◦ for χ = 1.0 (see figure 32a) to ϕt =ϕv + 23◦, ψt = 15◦ for χ = 2.0.
Correspondingly, the maximum ζ̇max of the vorticity component ω̇x,t within the region
covered by the secondary eigensolution increased by 26% (from ζ̇max = 30 to ζ̇max = 37,
different orientations of t for different values of χ). This corresponds to an increase
in the effective shear-layer strength seen by the unstable vortex cores, which is in
line with and partially justifies the 48%-increase in the amplification rates. It is
also worth mentioning that the maximal value of ω̇x,t computed for the fixed original
direction ϕt =ϕv+18◦, ψt = 12◦ decreases monotonously for increasing χ , which makes
it impossible to explain the increase in the amplification rates without considering
changes in the vortex-core direction.
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8.6. Conclusions on the Kelvin–Helmholtz analogy

The analogy with the inviscid Kelvin–Helmholtz instability mechanism holds most
closely for type I and type II secondary modes, while viscous effects seem to be
not negligible for type III modes. However, similarities with the Kelvin–Helmholtz
scenario have been found also for this instability type, so that the superposition
of viscous effects does not seem to exclude the existence of an underlying inviscid
mechanism. We list relevant features of the crossflow secondary instability, which can
easily be explained under consideration of the Kelvin–Helmholtz analogy.

(a) Linearity of the dispersions (figures 10b and 12b). The motion of secondary
perturbations is determined by the motion of the originating vorticity layer. As a
result phase velocities are equal for all instabilities developing in the same region
(§ 8.4).

(b) Local character of the instability. Any vorticity layer at the side of any primary
vortex is unstable by itself, without the need for interaction with neighbouring layers.
Neither is periodicity in the streamwise direction necessary. Localized corrugation of
the shear layer may well result in a limited number of unstable vortex cores, as in the
DNS by Wassermann & Kloker (2002).

(c) Similarity of the secondary instability for steady and unsteady primary states
(§ § 5.1 and 5.2). For the Kelvin–Helmholtz instability, it is irrelevant whether the
unstable shear layer is fixed or translating with constant velocity.

(d) Shape and orientation of secondary structures. Unstable vortex cores must lie
within a primary-state shear layer and be so oriented as to ensure the realizability of
a rigid-body motion (§ § 8.4 and 8.5.2).

(e) Sensitivity of secondary amplification rates on small alterations in the primary
state. This is a consequence of the sensitivity of the Kelvin–Helmholtz instability with
respect to velocity components normal to the main shear layer (§ 8.5).

( f ) Strength of the instability. Amplification rates are proportional to the strength
of the shear layer projected onto the plane normal to the vortex cores. The instability
is reduced in the presence of velocity components normal to the shear layer (§ § 8.1
and 8.5.1).

In conclusion, the ω̃x,r -distribution in figure 5(e) is mostly determined by the
gradient ∂wr/∂y rather than by ∂v/∂zr . The better performance of the wv-fixed
approach with respect to the vv-fixed approach is then most probably because the wv-
component dominates the flow in the crosscut plane (y, zv). As a result, the wv-fixed
approach provides a better description of the flow in that plane, which, in its turn,
influences the secondary instability by determining the orientation of the secondary
vortex cores (§ 8.5.2) and the distribution of the perturbing velocity component v̇n

normal to the unstable shear layer (§ 8.5.1).

9. Conclusions
Spatial DNS of secondary instability phenomena in a three-dimensional laminar

boundary-layer flow obtained by perturbing single steady or unsteady CF modes have
been carried out and compared with results from the secondary linear stability theory
(SLST). The main results may be summarized as follows.

(a) The primary state for the SLST analysis is not uniquely defined by the
underlying physical assumptions of the theory. We examined three equally legitimate
procedures for extracting the primary state from the exact flow field and observed
deviations in the resulting amplification rates of up to 50% with respect to the DNS.
In all cases, the SLST underestimated the correct amplification rates from the DNS,
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in particular for type I modes and with a marked sensitivity to modifications of the
wall-normal and crossflow velocity components of the primary state.

(b) Perfect agreement was obtained between SLST and DNS when the primary state
of the DNS was artificially modified to reproduce the simplified state of the SLST
analysis (adapted DNS). This confirms the accuracy of the Gaster transformation
proposed by Koch et al. (2000) and also provides a conclusive validation of the
numerical procedures. The error in the amplification rates from the SLST is evidently
due to the approximated representation of the primary state.

(c) Type I modes were found to be unstable both in steady and unsteady primary
states. Type II modes were not observed in the DNS even if amplification was
predicted by the SLST. However, unstable modes may be present but not visible
in the DNS if they are covered by more unstable modes with the same frequency.
SLST and DNS agree in predicting the amplification of type III modes in the steady
fundamental case and their absence in the unsteady one.

(d) The inconsistency observed in the literature between experiment and SLST with
respect to the role of type II modes is likely to be a consequence of inaccuracies in
the SLST amplification rates. These may be due to the simplifications introduced by
the theory, but also to inaccuracies in the primary state, to which SLST results have
been found to be very sensitive. We find that SLST results considering the crosswise-
velocity-wv-fixed approach never show a dominance of type II modes, in agreement
with the DNS. On the contrary SLST results obtained from the wall-normal-velocity-
vv-fixed approach indicate type II modes as the most amplified in the high-frequency
range.

(e) The sensitivity of the secondary growth rates with respect to the small wall-
normal and crossflow velocity components of the primary state opens a possibility
for efficient transition control by moderate suction or blowing at the wall.

( f ) Each local maximum of the secondary perturbation in the crosscut plane
represents an eigenmode of the stability problem and develops independently from
neighbouring maxima. This explains why spatial SLST results, where periodicity
and exponential amplification are imposed respectively in the directions normal and
parallel to the primary vortex-axis, may describe the infinite span configuration of the
DNS, where periodicity and spatial amplification are assumed to be in the spanwise
and chord directions, respectively. Indeed, neither the primary state nor the secondary
perturbation need be periodic in any direction. A further consequence is that spanwise
detuning in the sense of the Floquet theory is futile in the SLST of CF vortices. The
tuned periodic problem and the detuned problem, considering, respectively, series of
identical localized independent eigensolutions and spanwise modulated series of the
same eigensolutions, both provide complete, and equivalent, information about the
original localized eigensolution.

(g) Structures resulting from large-amplitude secondary modes have been
documented and an analogy, unequivocal for type I and type II modes, with
some deviations for type III modes, has been highlighted between the secondary
CF instability and the inviscid Kelvin–Helmholtz instability of the plane mixing
layer. Straightforward interpretations have been achieved for relevant aspects of the
secondary instability. In particular, the strong sensitivity of secondary amplification
rates with respect to the primary state has been found to be the transposition to
the SLST case of the sensitivity of Kelvin–Helmholtz instabilities with respect to
a velocity component normal to the unstable shear layer. The better performance
provided by the wv-fixed approach in predicting amplification rates for type I modes
is most probably a consequence of the fact that the wv-distribution determines that



Secondary instability of crossflow vortices 271

normal component more directly than the vv-distribution, it being understood that
the shear layer is mainly determined by the gradient of ur in the crosscut plane (y, zr ).
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instability of streamwise vortices in a swept-wing boundary layer. J. Fluid Mech. 534, 295–325.

Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability , 2nd edn. Cambridge University Press.

Hein, S. 2004 Nonlinear nonlocal transition ansalysis. Dissertation, Universität Stuttgart.
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